Applied Physics A

, 122:435 | Cite as

Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye

  • C. G. EzemaEmail author
  • A. C. Nwanya
  • B. E. Ezema
  • B. H. Patil
  • R. N. Bulakhe
  • P. O. Ukoha
  • C. D. Lokhande
  • Malik Maaza
  • Fabian I. Ezema
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies


Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm−2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.


TiO2 Electrochemical Impedance Spectroscopy TiO2 Film Constant Phase Element TiO2 Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) India.


  1. 1.
    M. Gratzel, The advent of mesoscopic injection solar cells. Prog. Photovolt. Res. Appl. 5, 429–442 (2006)CrossRefGoogle Scholar
  2. 2.
    B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)CrossRefADSGoogle Scholar
  3. 3.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, H. Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′- dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)CrossRefGoogle Scholar
  4. 4.
    Y.S. Yen, H.H. Chou, Y.C. Chen, C.Y. Hsu, J.T. Lin, Recent developments in molecule-based organic materials for dye-sensitized solar cells. J. Mater. Chem. 22, 8734–8747 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 2, 252–253 (2003)CrossRefGoogle Scholar
  6. 6.
    K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Kim, J.K. Lee, S.O. Kang, J. Ko, J.H. Yum, S. Fantacci, F. De Angelis, D. Di Censo, M.K. Nazeeruddin, M. Grätzel, Molecular engineering of organic sensitizers for solar cell applications. J. Am. Chem. Soc. 128, 16701–16707 (2006)CrossRefGoogle Scholar
  8. 8.
    W.M. Campbell, K.W. Jolley, P. Wagner, K. Wagner, P.J. Walsh, K.C. Gordon, L. Schmidt-Mende, M.K. Nazeeruddin, Q. Wang, M. Grätzel, D.L. Officer, Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 111(32), 11760–11762 (2007)CrossRefGoogle Scholar
  9. 9.
    S.S. Pandey, T. Inoue, N. Fujikawa, Y. Yamaguchi, S. Hayase, Alkyl and fluoro-alkyl substituted squaraine dyes: a prospective approach towards development of novel NIR sensitizers. Thin Solid Films 519(3), 1066 (2010)CrossRefADSGoogle Scholar
  10. 10.
    H.N. Tian, X.C. Yang, R.K. Chen, Y.Z. Pan, L. Li, A. Hagfeldt, L.C. Sun, Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 3741–3743 (2007)Google Scholar
  11. 11.
    H.N. Tian, X.C. Yang, J.Y. Cong, R.K. Chen, C. Teng, J. Liu, Y. Hao, L. Wang, L.C. Sun, Effect of different electron donating groups on the performance of dye-sensitized solar cells. Dyes Pigment. 84, 62 (2010)CrossRefGoogle Scholar
  12. 12.
    S.S. Park, Y.S. Won, Y.C. Choi, J.H. Kim, Molecular design of organic dyes with double electron acceptor for dye-sensitized solar cell. Energy Fuels 23(7), 3732–3736 (2009)CrossRefGoogle Scholar
  13. 13.
    Z.B. Xie, A. Midya, K.P. Loh, S. Adams, D.J. Blackwood, J. Wang, X.J. Zhang, Z.K. Chen, Highly efficient dye-sensitized solar cells using phenothiazine derivative organic dyes. Prog. Photovolt. Res. Appl. 18(8), 573–581 (2010)CrossRefGoogle Scholar
  14. 14.
    W.J. Wu, J.B. Yang, J.L. Hua, J. Tang, L. Zhang, Y.T. Long, H. Tian, Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. J. Mater. Chem. 20, 1772–1779 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126, 12218–12219 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, M. Grätzel, High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18(9), 1202–1205 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M. Grätzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 41, 5194–5196 (2008)CrossRefGoogle Scholar
  18. 18.
    W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem. Mater. 22, 1915–1925 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 13(18), 155–162 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Yella, R.H. Baker, B.F.E. Curchod, N. Ashari Astani, J. Teuscher, L.E. Polander, S. Mathew, J.E. Moser, I. Tavernelli, U. Rothlisberger, M. Grätzel, M.K. Nazeeruddin, J. Frey, Molecular engineering of a fluorene donor for dye-sensitized solar cells. Chem. Mater. 25, 2733–2739 (2013)CrossRefGoogle Scholar
  21. 21.
    H.M. Pathan, C.D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 27(2), 85–111 (2004)CrossRefGoogle Scholar
  22. 22.
    L. Zhang, J.M. Cole, P.G. Waddell, K.S. Low, X. Liu, Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain. Chem. Eng. 1, 1440–1452 (2013). doi: 10.1021/sc400183t CrossRefGoogle Scholar
  23. 23.
    S.B. Jambure, G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, Cost effective facile synthesis of TiO2 nanograins for flexible DSSC application using rose bengal dye. Electron. Mater. Lett. 10(5), 945 (2014)CrossRefADSGoogle Scholar
  24. 24.
    X. Wang, G. Liu, L. Wang, J. Pan, G.Q. Max, G.Q.M. Lu, H.M. Cheng, TiO2 films with oriented anatase 001 facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes. J. Mater. Chem. 21, 869–873 (2011)CrossRefGoogle Scholar
  25. 25.
    S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, W.J. Lee, P.S. Patil, Nanocoral architecture of TiO2 by hydrothermal process: synthesis and characterization. Appl. Surf. Sci. 257, 9737–9746 (2011)CrossRefADSGoogle Scholar
  26. 26.
    H.C. Choi, Y.M. Jung, S.B. Kim, Characterization of Raman spectra of size-selected TiO2 nanoparticles by two-dimensional correlation spectroscopy. Bull. Korean Chem. Soc. 25(3), 426–428 (2004)CrossRefGoogle Scholar
  27. 27.
    O. Manuel, J.V. Garcia-Ramos, C.J. Serna, J. Am. Ceram. Soc. 75, 2010–2012 (1992)CrossRefGoogle Scholar
  28. 28.
    A.H. Mayabadi, A.H. Mayabadi, V.S. Waman, M.M. Kamble, S.S. Ghosha, B.B. Gabhalea, S.R. Rondiya, A.V. Rokade, S.S. Khadtare, V.G. Sathe, H.M. Pathan, S.W. Gosavi, S.R. Jadkar, Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method. J. Phys. Chem. Solids (2013). doi: 10.1016/j.jpcs.2013.09.008i Google Scholar
  29. 29.
    I. Justicia, P. Ordejon, G. Canto, J.L. Mozos, J. Fraxedas, G.A. Battiston, R. Gerbasi, A. Figueras, Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 14, 1399 (2002)CrossRefGoogle Scholar
  30. 30.
    M.A. Henderson, Surf. Sci. Rep. 66, 185–297 (2011)CrossRefADSGoogle Scholar
  31. 31.
    T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R.A. Varin, F. Gu, Photocatalytic Activity of Hydrogenated TiO2. ACS Appl. Mater. Interfaces 5, 1892–1895 (2013)CrossRefGoogle Scholar
  32. 32.
    A.A. Sharma, M. Kasem, E. Ali, M.E. Moustafa, Synthesis and characterization of some new azo compounds based on 2,4-dihydroxy benzoic acid. J. Basic Environ. Sci. 1, 76–85 (2014)Google Scholar
  33. 33.
    A.M. More et al., Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors Actuators B Chem. 129(2), 671–677 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Anpo, P. V. Kamat (eds), Environmentally benign photocatalysts, nanostructure sci. and tech., Springer Sci and Bus. Media LLC, (2010) NatureGoogle Scholar
  35. 35.
    Y.-H. Chang, C.-M. Liu, C. Chen, H.-E. Cheng, The effect of geometric structure on photoluminescence characteristics of 1-DTiO2 nanotubes and 2-DTiO2 films fabricated by atomic layer deposition. J. Electrochem. Soc. 159(7), D401–D405 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Appl. Phys. Lett. 78, 1125 (2001)CrossRefADSGoogle Scholar
  37. 37.
    N. Koide, A. Islam, Y. Chiba, L. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. J. Photochem. Photobiol. A Chem. 182, 296–305 (2006)CrossRefGoogle Scholar
  38. 38.
    Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005)CrossRefGoogle Scholar
  39. 39.
    R. Zhou, Q. Zhang, E. Uchaker, J. Lan, M. Yin, G. Cao, Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J. Mater. Chem. A 2, 2517–2525 (2014)CrossRefGoogle Scholar
  40. 40.
    S.A. Pawar, R.S. Devan, D.S. Patil, V.V. Burungale, T.S. Bhat, S.S. Mali, S.W. Shin, J.E. Ae, C.K. Hong, Y.R. Ma, Hydrothermal growth of photoelectrochemically active titaniumdioxide cauliflower-like nanostructures. Electrochim. Acta 117, 470–479 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Zhang, J.M. Cole, P.G. Waddell, K.S. Low, X. Liu, Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain. Chem. Eng. 1, 1440–1452 (2013)CrossRefGoogle Scholar
  42. 42.
    K. Nakajima, K. Ohta, H. Katayanagi, K. Mitsuke, Photoexcitation and electron injection processes in azo dyes adsorbed on nanocrystalline TiO2 films. Chem. Phys. Lett. 510, 228–233 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. G. Ezema
    • 1
    • 2
    Email author
  • A. C. Nwanya
    • 3
  • B. E. Ezema
    • 1
  • B. H. Patil
    • 4
  • R. N. Bulakhe
    • 5
  • P. O. Ukoha
    • 1
  • C. D. Lokhande
    • 4
  • Malik Maaza
    • 6
    • 7
  • Fabian I. Ezema
    • 3
    • 6
    • 7
  1. 1.Department of Pure and Industrial ChemistryUniversity of Nigeria, NsukkaEnugu StateNigeria
  2. 2.National Centre for Energy Research and DevelopmentUniversity of Nigeria, NsukkaEnugu StateNigeria
  3. 3.Department of Physics and AstronomyUniversity of Nigeria, NsukkaEnugu StateNigeria
  4. 4.Thin Film Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  5. 5.School of Chemical EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  6. 6.Nanosciences African Network (NANOAFNET)iThemba LABS-National Research FoundationSomerset WestSouth Africa
  7. 7.UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate StudiesUniversity of South Africa (UNISA)PretoriaSouth Africa

Personalised recommendations