Applied Physics A

, 122:407 | Cite as

Experimental characterization and atomistic modeling of interfacial void formation and detachment in short pulse laser processing of metal surfaces covered by solid transparent overlayers

  • Eaman T. Karim
  • Maxim V. Shugaev
  • Chengping Wu
  • Zhibin Lin
  • Hisashi Matsumoto
  • Maria Conneran
  • Jan Kleinert
  • Robert F. Hainsey
  • Leonid V. ZhigileiEmail author
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies


The short pulse laser interaction with metal surfaces covered by solid transparent overlayers is investigated in experiments and atomistic simulations, with a particular aim of revealing the mechanisms responsible for structural modification of the metal–overlayer interfacial regions. Experimental characterization of Al–silica targets modified by single-pulse laser irradiation with the pulse duration of 10 ps reveals the transitions from the generation of extended interfacial voids with internal nanoscale surface roughness to the partial detachment of the overlayer from the metal substrate, and to the cracking/chipping or complete removal of the overlayer as the laser fluence increases. The mechanisms responsible for the appearance, growth, and percolation of the interfacial voids leading to the detachment of the overlayer from the metal substrate are investigated in a large-scale atomistic simulation. The results of the simulation demonstrate that the processes of nucleation and growth of the interfacial voids are driven by the dynamic relaxation of laser-induced stresses proceeding simultaneously with rapid phase transformations and temperature variation in the interfacial region. The growth and coalescence of the interfacial voids results in the formation of liquid bridges connecting the overlayer and the metal substrate, whereas solidification of the transient liquid structures produced by the breakup of the liquid bridges may be responsible for the formation of the nanoscale roughness of the interfacial voids observed in experiments. Computational analysis of the effect of preexisting interfacial voids reveals a complex dynamic picture of the initial expansion and subsequent compaction of the surface region of the metal substrate and suggests a possible scenario for the formation of voids below the metal–overlayer interface.


Metal Substrate Laser Fluence Liquid Bridge Melting Front Laser Shock Peening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support for this work was provided by the National Science Foundation (NSF) through Grant CMMI-1301298, the Air Force Office of Scientific Research through Grant FA9550-10-1-0541, and Electro Scientific Industries, Inc. Computational support was provided by the Oak Ridge Leadership Computing Facility (Project MAT048) and NSF through the Extreme Science and Engineering Discovery Environment (Project TG-DMR110090). The authors at ESI thank Motoaki Honda of University of Oregon for kind assistance with SEM measurements.


  1. 1.
    B.P. Fairand, B.A. Wilcox, W.J. Gallagher, D.N. Williams, Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J. Appl. Phys. 43, 3893 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    X. Wu, Z. Duan, H. Song, Y. Wei, X. Wang, C. Huang, Shock pressure induced by glass-confined laser shock peening: Experiments, modeling and simulation. J. Appl. Phys. 110, 053112 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    J. Bohandy, B.F. Kim, F.J. Adrian, Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    I. Zergioti, S. Mailis, N.A. Vainos, C. Fotakis, S. Chen, C.P. Grigoropoulos, Microdeposition of metals by femtosecond excimer laser. Appl. Surf. Sci. 127–129, 601 (1998)CrossRefGoogle Scholar
  6. 6.
    M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Ultra-fast movies of thin-film laser ablation. Appl. Phys. A 109, 409 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, H.P. Huber, Laser ablation of thin molybdenum films on transparent substrates at low fluences. Appl. Phys. A 102, 173 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses. J. Phys. D.: Appl. Phys. 45, 315303 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J.-H. Klein-Wiele, P. Simon, Sub-100 nm pattern generation by laser direct writing using a confinement layer. Opt. Express 21, 9017 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J. Ihlemann, R. Weichenhain-Schriever, Pulsed laser-induced formation of silica nanogrids. Nanoscale Res. Lett. 9, 102 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J. Sotrop, A. Kersch, M. Domke, G. Heise, H.P. Huber, Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses. Appl. Phys. A 113, 397 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M.V. Shugaev, N.M. Bulgakova, Thermodynamic and stress analysis of laser-induced forward transfer of metals. Appl. Phys. A 101, 103 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    E.T. Karim, M. Shugaev, C. Wu, Z. Lin, R.F. Hainsey, L.V. Zhigilei, Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer. J. Appl. Phys. 115, 183501 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Smith, B.T. Do, Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm. Appl. Opt. 47, 4812 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Cagnoux, F. Longy, Spallation and shock-wave behaviour of some ceramics. J. Phys. Colloq. 49(C3), C3–3 (1988)Google Scholar
  16. 16.
    C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    C. Wu, L.V. Zhigilei, Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J. Phys. Chem. C 120, 4438 (2016)CrossRefGoogle Scholar
  18. 18.
    A.Y. Vorobyev, C. Guo, Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B 72, 195422 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J.-M. Savolainen, M.S. Christensen, P. Balling, Material swelling as the first step in the ablation of metals by ultrashort laser pulses. Phys. Rev. B 84, 193410 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J.V. Oboňa, V. Ocelík, J.C. Rao, J.Z.P. Skolski, G.R.B.E. Römer, A.J. Huis in ‘t Veld, J.T.M. De Hosson, Modification of Cu surface with picosecond laser pulses. Appl. Surf. Sci. 303, 118 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S. Hermann, N.-P. Harder, R. Brendel, D. Herzog, H. Haferkamp, Picosecond laser ablation of SiO2 layers on silicon substrates. Appl. Phys. A 99, 151 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  24. 24.
    L.V. Zhigilei, B.J. Garrison, Pressure waves in microscopic simulations of laser ablation. Mater. Res. Soc. Symp. Proc. 538, 491 (1999)CrossRefGoogle Scholar
  25. 25.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Pressure-transmitting boundary conditions for molecular-dynamics simulations. Comput. Mater. Sci. 24, 421 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Wu, D.A. Thomas, Z. Lin, L.V. Zhigilei, Runaway lattice-mismatched interface in an atomistic simulation of femtosecond laser irradiation of Ag film–Cu substrate system. Appl. Phys. A 104, 781 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    S.M. Foils, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    A.F. Voter, S.P. Chen, Accurate interatomic potentials for Ni, Al, and Ni3Al. Mater. Res. Soc. Symp. Proc. 82, 175 (1999)CrossRefGoogle Scholar
  29. 29.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)CrossRefGoogle Scholar
  30. 30.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)zbMATHGoogle Scholar
  31. 31.
    Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686 (2010)CrossRefGoogle Scholar
  32. 32.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002)Google Scholar
  33. 33.
    D.S. Ivanov, L.V. Zhigilei, Effect of pressure relaxation on the mechanisms of short-pulse laser melting. Phys. Rev. Lett. 91, 105701 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    G. Paltauf, P.E. Dyer, Photomechanical processes and effects in ablation. Chem. Rev. 103, 487 (2003)CrossRefGoogle Scholar
  36. 36.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl. Phys. A 79, 1643 (2004)ADSGoogle Scholar
  37. 37.
    N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, YuV Petrov, M.B. Agranat, S.I. Anisimov, K. Nishihara, V.E. Fortov, Nanospallation induced by an ultrashort laser pulse. J. Exp. Theor. Phys. 107, 1 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892 (2009)CrossRefGoogle Scholar
  39. 39.
    E.T. Karim, Z. Lin, L.V. Zhigilei, Molecular dynamics study of femtosecond laser interactions with Cr targets. AIP Conf. Proc. 1464, 280 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    C. Wu, M.S. Cheristensen, J.-M. Savolainen, P. Balling, L.V. Zhigilei, Generation of sub-surface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single crystal Ag target. Phys. Rev. B 91, 035413 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Electro Scientific Industries, Inc.PortlandUSA
  3. 3.The International Society for Optics and Photonics, SPIEBellinghamUSA

Personalised recommendations