Applied Physics A

, 122:432 | Cite as

Laser-induced spalling of thin metal film from silica substrate followed by inflation of microbump

  • N. A. InogamovEmail author
  • V. V. Zhakhovsky
  • K. P. Migdal


Dynamics of a thin gold film on a silica substrate triggered by fast heating with the use of a subpicosecond laser pulse is studied. The pressure waves generated by such heating may result in spalling (delamination) of the film and its flying away from the substrate after an acoustic time defined by the film thickness and speed of sound in metal. Intensity of the heating laser beam has the spatial Gaussian distribution in a cross section. Therefore, the heating of film surface is non-uniform along cylindrical radius measured from the beam axis. As a result of such heating, the velocity distribution in material flying away from the substrate has a maximum at the beam axis. Thus, the separated film has dome-like shape which inflates with time. Volume of an empty cavity between the separated film and the substrate increases during inflation. Typical flight velocities are in the range of 30–200 m/s. The inflation stage can last from few to several tens of nanoseconds if the diffraction-limited micron-sized laser focal spots are used. Capillary forces acting along the warped flying film decelerate the inflation of dome. Capillary deceleration of a bulging dome focuses mass flow along the dome shell in the direction of its axis. This results in formation of an axial jet and droplet in a tip of the dome. Our new simulation results and comparisons with experiments are presented. The results explain appearance of debris in a form of frozen droplets on a surface of an irradiated spot. This is the consequence of the capillary return of a droplet.


Molecular Dynamic Monte Carlo Marangoni Effect Electron Thermal Conductivity Liquid Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thank RSCF (14-19-01599).


  1. 1.
    J. Bonse, A. Rosenfeld, J. Kruger, J. Appl. Phys. 106, 104910 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, S. Sakabe, Appl. Phys. Lett. 102, 174106 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    O. Varlamova, J. Reif, S. Varlamov, M. Bestehorn, ch. 1 in Progress in Nonlinear Nano-Optics, ed. by S. Sakabe, C. Lienau, R. Grunwald (Springer Int. Publ., 2015)Google Scholar
  4. 4.
    J.-M. Savolainen, M.S. Christensen, P. Balling, Phys. Rev. B 84, 193410 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    E.L. Gurevich, Phys. Rev. E 83, 031604 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Ionin, S.I. Kudryashov, S.V. Makarov et al., Laser Phys. Lett. 10, 056004 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    S.I. Ashitkov, S.A. Romashevskii, P.S. Komarov, A.A. Burmistrov, V.V. Zhakhovskii, N.A. Inogamov, M.B. Agranat, Quantum Electron. 45(6), 547 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    C. Wu, M.S. Christensen, J.-M. Savolainen, P. Balling, L.V. Zhigilei, Phys. Rev. B 91, 035413 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N.A. Inogamov, V.V. Zhakhovsky, V.A. Khokhlov, S.I. Ashitkov, Y.N. Emirov, K.V. Khichshenko, A.Y. Faenov, T.A. Pikuz, M. Ishino, M. Kando, N. Hasegawa, M. Nishikino, P.S. Komarov, B.J. Demaske, M.B. Agranat, S.I. Anisimov, T. Kawachi, I.I. Oleynik, J. Phys. Conf. Ser. 510, 012041 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Nakata, T. Okada, M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    F. Korte, J. Koch, B.N. Chichkov, Appl. Phys. A 79, 879 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Nakata, T. Hiromoto, N. Miyanaga, Appl. Phys. A 101, 471 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    C. Unger, J. Koch, L. Overmeyer, B.N. Chichkov, Opt. Express 20(22), 24864 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, B.N. Chichkov, J. Laser Appl. 24, 042017 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Y.P. Meshcheryakov, M.V. Shugaev, T. Mattle, T. Lippert, N.M. Bulgakova, Appl. Phys. A 113(2), 521 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D.S. Ivanov, A.I. Kuznetsov, V.P. Lipp, B. Rethfeld, B.N. Chichkov, M.E. Garcia, W. Schulz, Appl. Phys. A 111(3), 675 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S.V. Starikov, V.V. Pisarev, J. Appl. Phys. 117, 135901 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    N.A. Inogamov, V.V. Zhakhovskii, V.A. Khokhlov, J. Exp. Theor. Phys. (JETP) 120(1), 15 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Gubko, W. Husinsky, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, C.R. Nathala, A.A. Rudenko, L.V. Seleznev, D.V. Sinitsyn, I.V. Treshin, Laser Phys. Lett. 11, 065301 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Rudenko, S.G. Bezhanov, S.A. Uryupin, A.P. Kanavin, V.I. Emelyanov, S.V. Alferov, S.N. Khonina, S.V. Karpeev, A.A. Kuchmizhak, O.B. Vitrik, Y.N. Kulchin, JETP Lett. 101(6), 394–397 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    V. Zhakhovskii, K. Nishihara, Y. Fukuda, S. Shimojo, T. Akiyama, S. Miyanaga, H. Sone, H. Kobayashi, E. Ito, Y. Seo, M. Tamura, Y. Ueshima, A new dynamical domain decomposition method for parallel molecular dynamics simulation, in IEEE Proceeding of the 5th International Symposium on Cluster Computing and Grid (CCGrid 2005), vol. 2, May 9–12, 2005, (Cardiff, UK, 2005), pp. 848–854Google Scholar
  22. 22.
    V.K. Semenchenko, Surface Phenomena in Metals and Alloys (Pergamon, New York, 1961)Google Scholar
  23. 23.
    V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    V.I. Emel’yanov, D.A. Zayarniy, A.A. Ionin, I.V. Kiseleva, S.I. Kudryashov, S.V. Makarov, T.H.T. Nguyen, A.A. Rudenko, JETP Lett. 99(9), 518–522 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    A.I. Kuznetsov, J. Koch, B.N. Chichkov, Appl. Phys. A 94, 221–230 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    P.A. Danilov, E.A. Drozdova, A.A. Ionin, S.I. Kudryashov, S.B. Odinokov, A.A. Rudenko, V.I. Yurovskikh, D.A. Zayarny, Appl. Phys. A 117, 981–985 (2014)CrossRefGoogle Scholar
  27. 27.
    A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106, 479–487 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Nakata, K. Tsuchida, N. Miyanaga, T. Okada, J. Laser Micro Nanoeng. (JLMN) 3(2), 63–66 (2008)CrossRefGoogle Scholar
  29. 29.
    Y.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, V.I. Emelyanov, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, Phys. Rev. E 90, 023017 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Rouleau, C.-Y. Shih, C. Wu, L.V. Zhigilei, A.A. Puretzky, D.B. Geohegan, Appl. Phys. Lett. 104, 193106 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • N. A. Inogamov
    • 1
    Email author
  • V. V. Zhakhovsky
    • 1
    • 2
  • K. P. Migdal
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussian Federation
  2. 2.Dukhov Research Institute of AutomaticsROSATOMMoscowRussian Federation

Personalised recommendations