Advertisement

Applied Physics A

, 122:365 | Cite as

Influence of the confinement on laser-induced dry etching at the rear side of fused silica

  • Yunxiang Pan
  • Martin Ehrhardt
  • Pierre Lorenz
  • Bing Han
  • Bela Hopp
  • Csaba Vass
  • Xiaowu Ni
  • Klaus Zimmer
Article

Abstract

Laser-induced etching at the rear side of transparent material enables high-quality machining results. However, the mechanism is still not completely recognized which would allow further optimization. Therefore, multi-pulsed laser-induced backside dry etching with different thick photoresist films was studied experimentally for air (MP-LIBDE) and water confinements (cMP-LIBDE). The water confinement causes differences in photoresist ablation morphology and etching rate in dependence on laser fluence, film thickness and pulse number. Owing to the water confinement, the extent of photoresist film spallation and the etching rate slope difference in low and high fluence ranges are reduced. In particular, the etching rate of cMP-LIBDE keeps constant with different film thicknesses in contrast to MP-LIBDE. Two effects that are related to the water confinement, mechanical confinement and heat transfer alterations, are analysed and discussed in relation to the differences between MP-LIBDE and cMP-LIBDE.

Graphical Abstract

Keywords

Etching Rate Laser Spot Laser Fluence Rear Side Pulse Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to acknowledge the help of Mrs E. Salamatin with the interference microscopic measurements and for careful reading of the manuscript and Mrs. I. Herold for supporting in preparation of the films. This work was financially supported in parts by the Deutsche Forschungsgemeinschaft, the European Union, and the European Social Fund through project Supercomputer, the national virtual lab (Grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0010) and the DAAD (no.: 56266271). Further, the Fundamental Research Funds for the Central Universities (No. 30915015104), the National Natural Science Foundation of China for Young Scholars (No. 11402120) and the Jiangsu Natural Science Foundation for Young Scholars (No. BK20140796) provide financial support.

References

  1. 1.
    R. Böhme, K. Zimmer, Appl. Surf. Sci. 239, 109 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K. Zimmer, R. Böhme, B. Rauschenbach, Appl. Phys. A Mater. Sci. Process. 79, 1883 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J. Wang, H. Niino, A. Yabe, Appl. Phys. A 69, S271 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    B. Hopp, C. Vass, T. Smausz, Appl. Surf. Sci. 253, 7922 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 67, 545 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    W. Soliman, T. Nakano, N. Takada, K. Sasaki, Jpn. J. Appl. Phys. 49, 116202 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B. Hopp, T. Smausz, C. Vass, G. Szabó, R. Böhme, D. Hirsch, K. Zimmer, Appl. Phys. A 94, 899 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    R. Böhme, K. Zimmer, B. Rauschenbach, Appl. Phys. A 82, 325 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    K. Zimmer, M. Ehrhardt, P. Lorenz, X. Wang, C. Vass, T. Csizmadia, B. Hopp, Appl. Surf. Sci. 302, 42 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Pan, M. Ehrhardt, P. Lorenz, B. Han, C. Vass, X. Ni, K. Zimmer, Appl. Surf. Sci. 359, 449 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    K. Zimmer, M. Ehrhardt, R. Böhme, Laser ablation in liquids, in Principles and Applications in the Preparation of Nanomaterials, ed. by G. Yang (CRC Press, Boca Raton, 2012), p. 1032Google Scholar
  12. 12.
    J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    K. Zimmer, R. Böhme, M. Ehrhardt, B. Rauschenbach, Appl. Phys. A 101, 405 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    G. Kopitkovas, T. Lippert, C. David, A. Wokaun, J. Gobrecht, Microelectron. Eng. 67, 438 (2003)CrossRefGoogle Scholar
  15. 15.
    X. Ding, Y. Kawaguchi, H. Niino, A. Yabe, Appl. Phys. A 75, 641 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M. Ehrhardt, G. Raciukaitis, P. Gecys, K. Zimmer, Appl. Surf. Sci. 256, 7222 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Böhme, A. Braun, K. Zimmer, Appl. Surf. Sci. 186, 276 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    K. Zimmer, R. Böhme, D. Ruthe, B. Rauschenbach, Appl. Surf. Sci. 253, 6588 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    K. Zimmer, R. Boehme, B. Rauschenbach, J. Laser Micro Nanoeng. 1, 292 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of ScienceNanjing University of Science & TechnologyNanjingChina
  2. 2.Leibniz-Institute of Surface ModificationLeipzigGermany
  3. 3.Advanced Launching Co-innovation CentreNanjing University of Science & TechnologyNanjingChina
  4. 4.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary

Personalised recommendations