Applied Physics A

, 122:353 | Cite as

Complex and liquid hydrides for energy storage

  • Elsa Callini
  • Zuleyha Özlem Kocabas Atakli
  • Bjørn C. Hauback
  • Shin-ichi Orimo
  • Craig Jensen
  • Martin Dornheim
  • David Grant
  • Young Whan Cho
  • Ping Chen
  • Bjørgvin Hjörvarsson
  • Petra de Jongh
  • Claudia Weidenthaler
  • Marcello Baricco
  • Mark Paskevicius
  • Torben R. Jensen
  • Mark E. Bowden
  • Thomas S. Autrey
  • Andreas Züttel
Invited Paper
Part of the following topical collections:
  1. Hydrogen-based energy storage

Abstract

The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

References

  1. 1.
    L. Quai et al., ChemSusChem. doi:10.1002/cssc.201500231
  2. 2.
    A. Züttel, A. Borgschulte, L. Schlapbach, Hydrogen as a Future Energy Carrier (Wiley-VCH, Weinheim, 2008), pp. 427. ISBN: 978-3-527-30817-0Google Scholar
  3. 3.
    Y. Nakamori, K. Miwa, Phys. Rev. B 74, 045126(1)–045126(9) (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S. Takagi, S. Orimo, Scr. Mater. (Viewpoint Paper) 109, 1–5 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Borgschulte et al., Phys. Chem. Chem. Phys. 10, 4045 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Frankcombe, Chem. Rev. 112, 2164 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Borgschulte, E. Callini, B. Probst, A. Jain, S. Kato, O. Friedrichs, A. Remhof, M. Bielmann, A. Ramirez-Cuesta, A. Züttel, J. Phys. Chem. C 115, 17220 (2011)CrossRefGoogle Scholar
  8. 8.
    L.H. Jepsen, M.B. Ley, Y.-S. Lee, Y.W. Cho, M. Dornheim, J.O. Jensen, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Mater. Today 17, 129–135 (2014)CrossRefGoogle Scholar
  9. 9.
    M.B. Ley, L.H. Jepsen, Y.-S. Lee, Y.W. Cho, J.M. Bellosta von Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Mater. Today 17, 122–128 (2014)CrossRefGoogle Scholar
  10. 10.
    D.B. Ravnsbæk, Y. Filinchuk, R. Černý, M.B. Ley, Dr Haase, H.J. Jakobsen, Jr Skibsted, T.R. Jensen, Inorg. Chem. 49, 3801–3809 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Frommen, N. Aliouane, S. Deledda, J.E. Fonneløp, H. Grove, K. Lieutenant, I. Llamas-Jansa, S. Sartori, M.H. Sørby, B.C. Hauback, J. Alloy. Compd. 496, 710–716 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Sato, K. Miwa, Y. Nakamori, K. Ohoyama, H.-W. Li, T. Noritake, M. Aoki, S. Towata, S. Orimo, Phys. Rev. B 77, 104114(1)–104114(8) (2008)ADSGoogle Scholar
  13. 13.
    T. Jaron, W. Grochala, Dalton Trans. 39, 160–166 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.-S. Lee, J.-H. Shim, Y.W. Cho, J. Phys. Chem. C 114, 12833–12837 (2010)CrossRefGoogle Scholar
  15. 15.
    D.B. Ravnsbæk, L.H. Sørensen, Y. Filinchuk, D. Reed, D. Book, H.J. Jakobsen, F. Besenbacher, J. Skibsted, T.R. Jensen, Eur. J. Inorg. Chem. 11, 1608–1612 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, T.R. Jensen, Prog. Mater Sci. 58, 30–75 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Hagemann, M. Longhini, J.W. Kaminski, A. Wesolowski, R. Cerny, N. Penin, M.H. Sørby, B.C. Hauback, G. Severa, C.M. Jensen, J. Phys. Chem. A 112, 7551–7555 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Ravnsbæk, Y. Filinchuk, Y. Cerenius, H.J. Jakobsen, F. Besenbacher, J. Skibsted, T.R. Jensen, Angew. Chem. Int. Ed. 48, 6659 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Ĉerný, D.B. Ravnsbæk, P. Schouwink, Y. Filinchuk, Y. Penin, J. Teyssier, L. Smrčok, T.R. Jensen, J. Phys. Chem. C 116, 1563 (2012)CrossRefGoogle Scholar
  20. 20.
    O. Friedrichs, A. Borgschulte, S. Kato, F. Buchter, R. Gremaud, A. Remhof, A. Züttel, Chem. A Eur. J. 15, 5531–5534 (2009)CrossRefGoogle Scholar
  21. 21.
    O. Friedrichs, J.W. Kim, A. Remhof, D. Wallacher, A. Hoser, Y.W. Cho, K.H. Oh, A. Zuttel, Phys. Chem. Chem. Phys. 12, 4600–4603 (2010)CrossRefGoogle Scholar
  22. 22.
    O. Friedrichs, A. Remhof, A. Borgschulte, F. Buchter, S. Orimo, A. Züttel, Phys. Chem. Chem. Phys. 12, 10919–10922 (2010)CrossRefGoogle Scholar
  23. 23.
    O. Friedrichs, A. Remhof, S.J. Hwang, A. Züttel, Chem. Mater. 22, 3265–3268 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Remhof, Y. Yan, D. Rentsch, A. Borgschulte, C.M. Jensen, A. Zuttel, J. Mater. Chem. A 2, 7244 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Remhof, A. Borgschulte, O. Friedrichs, P. Mauron, Y. Yan, A. Züttel, Scr. Mater. 66, 280–283 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Pistidda, S. Garroni, F. Dolci, E.G. Bardají, A. Khandelwal, P. Nolis, M. Dornheim, R. Gosalawit, T. Jensen, Y. Cerenius, S. Suriñach, M.D. Baró, W. Lohstroh, M. Fichtner, J. Alloy. Compd. 508, 212–215 (2010)CrossRefGoogle Scholar
  27. 27.
    B. Richter, D.B. Ravnsbaek, N. Tumanov, Y. Filinchuk, T.R. Jensen, Dalton Trans. 44, 3988–3996 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Filinchuk, B. Richter, T.R. Jensen, V. Dmitriev, D. Chernyshov, H. Hagemann, Angew. Chem. Int. Ed. 50, 11162–11166 (2011)CrossRefGoogle Scholar
  29. 29.
    N.A. Tumanov, D.A. Safin, B. Richter, Z. Lodziana, T.R. Jensen, Y. Garcia, Y. Filinchuk, Dalton Trans. 44, 6571–6580 (2015)CrossRefGoogle Scholar
  30. 30.
    M.B. Ley, M. Paskevicius, P. Schouwink, B. Richter, D.A. Sheppard, C.E. Buckley, T.R. Jensen, Dalton Trans. 43, 13333–13342 (2014)CrossRefGoogle Scholar
  31. 31.
    T.D. Humphries, M.B. Ley, C. Frommen, K.T. Munroe, T.R. Jensen, B.C. Hauback, J. Mater. Chem. A 3, 691–698 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Sadikin, K. Stare, P. Schouwink, M. Brix Ley, T.R. Jensen, A. Jensen, R. Černý, J. Solid State Chem. 225, 231–239 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    R. Černý, P. Schouwink, Y. Sadikin, K. Stare, L.U. Smrčok, B. Richter, T.R. Jensen, Inorg. Chem. 52, 9941–9947 (2013)CrossRefGoogle Scholar
  34. 34.
    P. Schouwink, M.B. Ley, T.R. Jensen, L. Smrcok, R. Cerny, Dalton Trans. 43, 7726–7733 (2014)CrossRefGoogle Scholar
  35. 35.
    L.H. Jepsen, M.B. Ley, Y. Filinchuk, F. Besenbacher, T.R. Jensen, ChemSusChem 8, 1452–1463 (2015)CrossRefGoogle Scholar
  36. 36.
    L.H. Jepsen, M.B. Ley, R. Černý, Y.-S. Lee, Y.W. Cho, D. Ravnsbæk, F. Besenbacher, J. Skibsted, T.R. Jensen, Inorg. Chem. 54, 7402–7414 (2015)CrossRefGoogle Scholar
  37. 37.
    D.B. Ravnsbæk, E.A. Nickels, R. Černý, C.H. Olesen, W.I.F. David, P.P. Edwards, Y. Filinchuk, T.R. Jensen, Inorg. Chem. 52, 10877 (2013)CrossRefGoogle Scholar
  38. 38.
    C. Frommen, M.H. Sørby, P. Ravindran, P. Vajeeston, H. Fjellvåg, B.C. Hauback, J. Phys. Chem. C 115, 23591–23602 (2011)CrossRefGoogle Scholar
  39. 39.
    J.E. Olsen, C. Frommen, T.R. Jensen, M.D. Riktor, M.H. Sørby, B.C. Hauback, RSC Adv. 4, 1570–1582 (2014)CrossRefGoogle Scholar
  40. 40.
    M.B. Ley, D.B. Ravnsbæk, Y. Filinchuk, Y.S. Lee, R. Janot, Y.W. Cho, J. Skibsted, T.R. Jensen, Chem. Mater. 24, 1654 (2012)CrossRefGoogle Scholar
  41. 41.
    M.B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, T.R. Jensen, J. Phys. Chem. C 116, 21267–21276 (2012)CrossRefGoogle Scholar
  42. 42.
    A.V. Skripov, A.V. Soloninin, M.B. Ley, T.R. Jensen, Y. Filinchuk, J. Phys. Chem. C 117, 14965–14972 (2013)CrossRefGoogle Scholar
  43. 43.
    D.B. Ravnsbæk, M.B. Ley, Y.-S. Lee, H. Hagemann, V. D’Anna, Y.W. Cho, Y. Filinchuk, T.R. Jensen, Int. J. Hydrogen Energy 37, 8428–8438 (2012)CrossRefGoogle Scholar
  44. 44.
    J.E. Olsen, C. Frommen, M.H. Sørby, B.C. Hauback, RSC Adv. 3, 10764–10774 (2013)CrossRefGoogle Scholar
  45. 45.
    I. Lindemann, R. Domènech Ferrer, L. Dunsch, Y. Filinchuk, R. Černý, H. Hagemann, V. D’Anna, L.M. Lawson Daku, L. Schultz, O. Gutfleisch, Chem Eur J 16, 8707–8712 (2010)CrossRefGoogle Scholar
  46. 46.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  47. 47.
    L. Mosegaard, B. Moller, J.-E. Jorgensen, Y. Filinchuk, Y. Cerenius, J.C. Hanson, E. Dimasi, F. Besenbacher, T.R. Jensen, J. Phys. Chem. C 112, 1299–1303 (2008)CrossRefGoogle Scholar
  48. 48.
    L.M. Arnbjerg, D.B. Ravnsbæk, Y. Filinchuk, R.T. Vang, Y. Cerenius, F. Besenbacher, J.-E. Jørgensen, H.J. Jakobsen, T.R. Jensen, Chem. Mater. 21, 5772–5782 (2009)CrossRefGoogle Scholar
  49. 49.
    O. Zavorotynska, M. Corno, E. Pinatel, L.H. Rude, P. Ugliengo, T.R. Jensen, M. Baricco, Crystals 2, 144 (2012)CrossRefGoogle Scholar
  50. 50.
    L.H. Rude, O. Zavorotynska, L.M. Arnbjerg, D.B. Ravnsbæk, R.A. Malmkjær, H. Grove, B.C. Hauback, M. Baricco, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Int. J. Hydrogen Energy 36, 15664–15672 (2011)CrossRefGoogle Scholar
  51. 51.
    L.H. Rude, E. Groppo, L.M. Arnbjerg, D.B. Ravnsbæk, R.A. Malmkjær, Y. Filinchuk, M. Baricco, F. Besenbacher, T.R. Jensen, J. Alloy. Compd. 509, 8299–8305 (2011)CrossRefGoogle Scholar
  52. 52.
    N. Verdal, T.J. Udovic, J.J. Rush, H. Wu, A.V. Skripov, J. Phys. Chem. C 117(2013), 12010–12011 (2018)Google Scholar
  53. 53.
    J.E. Olsen, M.H. Sørby, B.C. Hauback, J. Alloys Compd. 509, L228–L231 (2011)CrossRefGoogle Scholar
  54. 54.
    D.B. Ravnsbæk, L.H. Rude, T.R. Jensen, J. Solid State Chem. 184, 1858–1866 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    I. Llamas-Jansa, N. Aliouane, S. Deledda, J.E. Fonneløp, C. Frommen, T. Humphries, K. Lieutenant, S. Sartori, M.H. Sørby, B.C. Hauback, J. Alloy. Compd. 530, 186–192 (2012)CrossRefGoogle Scholar
  56. 56.
    J.E. Olsen, M.H. Sørby, B.C. Hauback, J. Alloy. Compd. 509, L228–L231 (2011)CrossRefGoogle Scholar
  57. 57.
    H. Grove, L.H. Rude, T.R. Jensen, M. Corno, P. Ugliengo, M. Baricco, M.H. Sørby, B.C. Hauback, RSC Adv. 4, 4736–4742 (2014)CrossRefGoogle Scholar
  58. 58.
    L.H. Rude, Y. Filinchuk, M.H. Sørby, B.C. Hauback, F. Besenbacher, T.R. Jensen, J. Phys. Chem. C 115, 7768–7777 (2011)CrossRefGoogle Scholar
  59. 59.
    J.Y. Lee, Y.-S. Lee, J.-Y. Suh, J.-H. Shim, Y.W. Cho, Metal halide doped metal borohydrides for hydrogen storage: The case of Ca(BH4)2–CaX2 (X = F, Cl) mixture. J. Alloys Compd. 506, 721–727 (2010)CrossRefGoogle Scholar
  60. 60.
    S. Hino, J.E. Fonneløp, M. Corno, O. Zavorotynska, A. Damin, B. Richter, M. Baricco, T.R. Jensen, M.H. Sørby, B.C. Hauback, J. Phys. Chem. C 116, 12482–12488 (2012)CrossRefGoogle Scholar
  61. 61.
    D.A. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicius, C.E. Buckley, RSC Adv. 4(52), 26552–26562 (2014)CrossRefGoogle Scholar
  62. 62.
    H.W. Brinks, A. Fossdal, B.C. Hauback, J. Phys. Chem. C 112, 5658–5661 (2008)CrossRefGoogle Scholar
  63. 63.
    N. Eigen, U. Bösenberg, J. Bellosta von Colbe, T.R. Jensen, Y. Cerenius, M. Dornheim, T. Klassen, R. Bormann, J. Alloy. Compd. 477, 76–80 (2009)CrossRefGoogle Scholar
  64. 64.
    L.H. Rude, U. Filso, V. D’Anna, A. Spyratou, B. Richter, S. Hino, O. Zavorotynska, M. Baricco, M.H. Sorby, B.C. Hauback, H. Hagemann, F. Besenbacher, J. Skibsted, T.R. Jensen, Phys. Chem. Chem. Phys. 15, 18185–18194 (2013)CrossRefGoogle Scholar
  65. 65.
    R. Heyn, I. Saldan, M.H. Sørby, C. Frommen, B. Arnstad, A.M. Bougza, H. Fjellvåg, B.C. Hauback, Phys. Chem. Chem. Phys. 15, 11226–11230 (2013)CrossRefGoogle Scholar
  66. 66.
    C. Pistidda, F. Karimi, S. Garroni, A. Rzeszutek, C. Bonatto Minella, C. Milanese, T.T. Le, L.H. Rude, J. Skibsted, T.R. Jensen, C. Horstmann, C. Gundlach, M. Tolkiehn, P.K. Pranzas, A. Schreyer, T. Klassen, M. Dornheim, J. Phys. Chem. C 118, 28409–28417 (2014)CrossRefGoogle Scholar
  67. 67.
    I. Saldan, M. Schulze, C. Pistidda, R. Gosalawit-Utke, O. Zavorotynska, L.H. Rude, J. Skibsted, D. Haase, Y. Cerenius, T.R. Jensen, G. Spoto, M. Baricco, K. Taube, M. Dornheim, J. Phys. Chem. C 117, 17360–17366 (2013)CrossRefGoogle Scholar
  68. 68.
    D.B. Ravnsbæk, Y. Filinchuk, R. Černý, T.R. Jensen, Z. Kristallogr. 225, 557 (2010)CrossRefGoogle Scholar
  69. 69.
    L.H. Rude, T.K. Nielsen, D.B. Ravnsbæk, U. Bösenberg, M.B. Ley, B. Richter, L.M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Phys. Status Solidi A 208, 1754–1773 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    M. Paskevicius, M.B. Ley, D.A. Sheppard, T.R. Jensen, C.E. Buckley, Phys. Chem. Chem. Phys. 15, 19774–19789 (2013)CrossRefGoogle Scholar
  71. 71.
    J.Y. Lee, D. Ravnsbæk, Y.-S. Lee, Y. Kim, Y. Cerenius, J.-H. Shim, T.R. Jensen, N.H. Hur, Y.W. Cho, J. Phys. Chem. C 113, 15080–15086 (2009)CrossRefGoogle Scholar
  72. 72.
    E.G. Bardají, Z. Zhao-Karger, N. Boucharat, A. Nale, M.J. van Setten, W. Lohstroh, E. Röhm, M. Catti, M. Fichtner, J. Phys. Chem. C 115, 6095–6101 (2011)CrossRefGoogle Scholar
  73. 73.
    M. Ley, E. Roedern, P. Thygesen, T. Jensen, Energies 8, 2701 (2015)CrossRefGoogle Scholar
  74. 74.
    M.B. Ley, E. Roedern, T.R. Jensen, Phys. Chem. Chem. Phys. 16, 24194–24199 (2014)CrossRefGoogle Scholar
  75. 75.
    P.C. Aeberhard, K. Refson, P.P. Edwards, W.I.F. David, Phys. Rev. B 83, 174102 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    W.I.F. David, S.K. Callear, M.O. Jones, P.C. Aeberhard, S.D. Culligan, A.H. Pohl, S.R. Johnson, K.R. Ryan, J.E. Parker, P.P. Edwards, C.J. Nuttall, A. Amieiro-Fonseca, Phys. Chem. Chem. Phys. 14(2012), 11800–11801 (1807)Google Scholar
  77. 77.
    L.H. Rude, M. Corno, P. Ugliengo, M. Baricco, Y.S. Lee, Y.W. Cho, F. Besenbacher, J. Overgaard, T.R. Jensen, J. Phys. Chem. C 116, 20239 (2012)CrossRefGoogle Scholar
  78. 78.
    S. Aldridge, A.J. Blake, A.J. Downs, R.O. Gould, S. Parsons, C.R. Pulham, J. Chem. Soc. Dalton Trans. (1997) 1007–1012Google Scholar
  79. 79.
    P.H. Bird, M.R. Churchill, Chem. Commun. (London) 8, 403 (1967)CrossRefGoogle Scholar
  80. 80.
    R.W. Broach, I.S. Chuang, T.J. Marks, J.M. Williams, Inorg. Chem. 22, 1081 (1983)CrossRefGoogle Scholar
  81. 81.
    M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa, H. Takamura, Appl. Phys. Lett. 224103(1), 224103(3) (2007)ADSGoogle Scholar
  82. 82.
    H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, J. Am. Chem. Soc. 131, 894–895 (2009)CrossRefGoogle Scholar
  83. 83.
    M. Matsuo, H. Takamura, H. Maekawa, H.-W. Li, S. Orimo, Appl. Phys. Lett. 94, 084103(1)–084103(3) (2009)ADSCrossRefGoogle Scholar
  84. 84.
    A.V. Skripov, A.V. Soloninin, L.H. Rude, T.R. Jensen, Y. Filinchuk, J. Phys. Chem. C 116, 26177–26184 (2012)CrossRefGoogle Scholar
  85. 85.
    P. Schouwink, M.B. Ley, A. Tissot, H. Hagemann, T.R. Jensen, Ľ. Smrčok, R. Černý, Nat. Commun. 5, 5706 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    T.K. Nielsen, A. Karkamkar, M. Bowden, F. Besenbacher, T.R. Jensen, T. Autrey, Methods to stabilize and destabilize ammonium borohydride. Dalton Trans. 42, 680–687 (2013)CrossRefGoogle Scholar
  87. 87.
    Z. Xiong, C.K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M.O. Jones, S.R. Johnson, P.P. Edwards, Nat. Mater. 7, 138 (2008)ADSCrossRefGoogle Scholar
  88. 88.
    K.J. Gross, K.R. Carrington, S. Barcelo, A. Karkamkar, J. Purewal, S. Ma, H. Zhou, P. Dantzer, K. Ott, T. Burrell, T. Semeslberger, Y. Pivak, B. Dam, D. Chandra, Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials, National Renewable Energy Laboratory (2012)Google Scholar
  89. 89.
    D.P. Broom, Int. J. Hydrogen Energy 32, 4871–4888 (2007)CrossRefGoogle Scholar
  90. 90.
    J. Tomiska, in R.A. Rapp (Ed.), Physicochemical Measurements in Metal Research. Vol. IV, Part I, of R.F. Bunshah (Ed.), Techniques of Metal Reasearch. New York, Interscience Publ. (1970) p. 247Google Scholar
  91. 91.
    L.N.N. Nforbi, A. Talekar, K.H. Lau, R. Chellapa, W.M. Chien, D. Chandra, H. Hagemann, Y. Filinchuk, J.C. Zhao, A. Levchenko, Int. J. Hydrogen Energy 39, 2175–2186 (2014)CrossRefGoogle Scholar
  92. 92.
    K. Bohmhammel, B. Christ, G. Wolf, Thermochim. Acta 271, 67–73 (1996)CrossRefGoogle Scholar
  93. 93.
    A. El Kharbachi, I. Nuta, F. Hodaj, M. Baricco, Thermochim. Acta 520, 75–79 (2011)CrossRefGoogle Scholar
  94. 94.
    J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31, 659–665 (2006)CrossRefGoogle Scholar
  95. 95.
    E.H. Majzoub, V. Ozoliņš, Phys. Rev. B 77, 104115 (2008)ADSCrossRefGoogle Scholar
  96. 96.
    H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics (Cambridge University Press, Cambridge, 2007)MATHCrossRefGoogle Scholar
  97. 97.
    M.W. Chase, NIST-JANAF-Thermochemical Tables, 4th ed. (1998)Google Scholar
  98. 98.
    J.M. Joubert, JOM 64, 1438–1447 (2012)ADSCrossRefGoogle Scholar
  99. 99.
    M. Baricco, M. Palumbo, E. Pinatel, M. Corno, P. Ugliengo, Adv. Sci. Technol. 72, 213–218 (2010)CrossRefGoogle Scholar
  100. 100.
    A. El Kharbachi, E. Pinatel, I. Nuta, C. Chatillon, M. Baricco, Calphad 39, 80–90 (2012)CrossRefGoogle Scholar
  101. 101.
    E.R. Pinatel, E. Albanese, B. Civalleri, M. Baricco, J. Alloy Compd. (2015). doi:10.1016/j.jallcom.2015.01.199
  102. 102.
    J.J. Vajo, C.C. Ahn, R.C. Bowman, B. Fultz, J. Phys. Chem. B 108, 13977–13983 (2004)CrossRefGoogle Scholar
  103. 103.
    A.-L. Chaudhary, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Thermodynamic destabilisation of MgH2 and NaMgH3 using group IV elements Si, Ge or Sn. J. Alloys Compd. 623, 109–116 (2015)CrossRefGoogle Scholar
  104. 104.
    J.J. Vajo, S.L. Skeith, F. Mertens, J. Phys. Chem. B 109, 3719–3722 (2005)CrossRefGoogle Scholar
  105. 105.
    A.T. Luedtke, T. Autrey, Inorg. Chem. 49, 3905–3910 (2010)CrossRefGoogle Scholar
  106. 106.
    D. Neiner, A. Karkamkar, M. Bowden, Y.J. Choi, A. Luedtke, J. Holladay, A. Fisher, N. Szymczak, T. Autrey, Energy Environ. Sci. 4, 4187 (2011)CrossRefGoogle Scholar
  107. 107.
    D. Wechsler, Y. Cui, D. Dean, B. Davis, P.G. Jessop, J. Am. Chem. Soc. 130, 17195–17203 (2008)CrossRefGoogle Scholar
  108. 108.
    T.P. Tiemersma, T. Kolkman, J.A.M. Kuipers, M. van Sint Annaland, Chem. Eng. J. 230(203), 223 (2012)CrossRefGoogle Scholar
  109. 109.
    P.G. Campbell, L.N. Zakharov, D.J. Grant, D.A. Dixon, S. Liu, J. Am. Chem. Soc. 132, 3289–3291 (2010)CrossRefGoogle Scholar
  110. 110.
    G. Chen, L.N. Zakharov, M.E. Bowden, A.J. Karkamkar, S.M. Whittemore, E.B. Garner, T.C. Mikulas, D.A. Dixon, T. Autrey, S. Liu, J. Am. Chem. Soc. 137, 134–137 (2015)CrossRefGoogle Scholar
  111. 111.
    W. Luo, L.N. Zakharov, S. Liu, J. Am. Chem. Soc. 133, 13006–13009 (2011)CrossRefGoogle Scholar
  112. 112.
    K. Brooks, M. Bowden, A. Karkamkar, S. Whittemore, T. Autrey, in preparationGoogle Scholar
  113. 113.
    P. Nordlander, J.K. Norskov, F. Besenbacher, J. Phys. F Metal Phys. 16(9), 1161–1171 (1986)ADSCrossRefGoogle Scholar
  114. 114.
    J.K. Norskov, F. Besenbacher, J Less Common Metals 130, 475–490 (1987)CrossRefGoogle Scholar
  115. 115.
    Puru Jena, Virginia Commonwealth University, Richmond, VA (to be published)Google Scholar
  116. 116.
    W. Grochala, P.P. Edwards, Chem. Rev. 104, 1283 (2004)CrossRefGoogle Scholar
  117. 117.
    Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A. Züttel, S. Orimo, Phys Rev B 74, 045126(1)–045126(9) (2006)Google Scholar
  118. 118.
    M.B. Smith, G.E. Bass, J. Chem. Eng. Data 8, 342 (1963)CrossRefGoogle Scholar
  119. 119.
    P. Claudy, B. Bonnetot, J.M. Letoffe, G. Turck, Thermochim. Acta 27(1–3), 213–221 (1978)CrossRefGoogle Scholar
  120. 120.
    S.C. Abrahams, J.J. Kalnajs, Chem. Phys. 22, 434–436 (1954)ADSGoogle Scholar
  121. 121.
    T.N. Dymova, D.P. Aleksandrov, V.N. Konoplev, T.A. Silina, N.T. Kuznetsov, Russ. J. Coord. Chem. Koordinatsionnaia Khimiia 19, 529–534 (1993)Google Scholar
  122. 122.
    D.A. Sheppard et al., J. Mater. Chem. A 1, 12775 (2013)CrossRefGoogle Scholar
  123. 123.
    T.D. Humphries et al., Chem. Comm. (2015). doi:10.1039/c5cc03654b Google Scholar
  124. 124.
    M.P. Pitt et al., J. Am. Chem. Soc. 135, 6930 (2013)CrossRefGoogle Scholar
  125. 125.
    H.W. Langmi, G. Sean McGrady, X. Liu, C.M. Jensen, Modification of the H2 desorption properties of LiAlH4 through doping with Ti. J. Phys. Chem. C 114 (23), 10666–10669 (2010)Google Scholar
  126. 126.
    P.E. De Jongh, M. Allendorf, J.J. Vajo, C. Zlotea, Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull. 38(6), 488–494 (2013)CrossRefGoogle Scholar
  127. 127.
    M. Fichtner, Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mater. 7(6), 443–455 (2005)CrossRefGoogle Scholar
  128. 128.
    J.J. Vajo, Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr. Opin. Solid State Mater. Sci. 15(2), 52–61 (2011)ADSCrossRefGoogle Scholar
  129. 129.
    T.K. Nielsen, F. Besenbacher, T.R. Jensen, Nanoconfined hydrides for energy storage. Nanoscale 3(5), 2086–2098 (2011)ADSCrossRefGoogle Scholar
  130. 130.
    P.E. De Jongh, P. Adelhelm, Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem 3(12), 1332–1348 (2010)CrossRefGoogle Scholar
  131. 131.
    C.P. Baldé, B.P.C. Hereijgers, J.H. Bitter, K.P. De Jong, Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. Angew. Chem. Int. Ed. 45(21), 3501–3503 (2006)CrossRefGoogle Scholar
  132. 132.
    A.F. Gross, J.J. Vajo, S.L. Van Atta, G.L. Olson, Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J. Phys. Chem. C 112(14), 5651–5657 (2008)CrossRefGoogle Scholar
  133. 133.
    P. Adelhelm, J. Gao, M.H.W. Verkuijlen, C. Rongeat, M. Herrich, P.J.M. Van Bentum, O. Gutfleisch, A.P.M. Kentgens, K.P. De Jong, P.E. De Jongh, Comprehensive study of melt infiltration for the synthesis of NaAlH4/C nanocomposites. Chem. Mater. 22(7), 2233–2238 (2010)CrossRefGoogle Scholar
  134. 134.
    P. Błoński, Z. Łodziana, First-principles study of LiBH4 nanoclusters interaction with models of porous carbon and silica scaffolds. Int. J. Hydrogen Energy 39(18), 9848–9853 (2014)CrossRefGoogle Scholar
  135. 135.
    R. Bogerd, P. Adelhelm, J.H. Meeldijk, K.P. De Jong, P.E. De Jongh, The structural characterization and H2 sorption properties of carbon-supported Mgx1−xNix nanocrystallites. Nanotechnology 20(20), 204019 (2009)Google Scholar
  136. 136.
    C. Zlotea, F. Cuevas, J. Andrieux, C. Matei Ghimbeu, E. Leroy, E. Sengmany, C. Vix-Guterl, R. Gadiou, T. Martens, M. Latroche, Tunable synthesis of (Mg–Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy 2(1), 12–20 (2013)CrossRefGoogle Scholar
  137. 137.
    Y. Yan, Y.S. Au, D. Rentsch, A. Remhof, P.E. De Jongh, A. Züttel, Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites. J. Mater. Chem. A 1(37), 11177–11183 (2013)CrossRefGoogle Scholar
  138. 138.
    Y.S. Au, Y. Yan, K.P. De Jong, A. Remhof, P.E. De Jongh, Pore confined synthesis of magnesium boron hydride nanoparticles. J. Phys. Chem. C 118(36), 20832–20839 (2014)CrossRefGoogle Scholar
  139. 139.
    T.K. Nielsen, U. Bösenberg, R. Gosalawit, M. Dornheim, Y. Cerenius, F. Besenbacher, T.R. Jensen, A reversible nanoconfined chemical reaction. ACS Nano 4(7), 3903–3908 (2010)CrossRefGoogle Scholar
  140. 140.
    U. Bösenberg, D.B. Ravnsbæk, H. Hagemann, V. D’Anna, C.B. Minella, C. Pistidda, W. Van Beek, T.R. Jensen, R. Bormann, M. Dornheim, Pressure and temperature influence on the desorption pathway of the LiBH4–MgH2 composite system. J. Phys. Chem. C 114(35), 15212–15217 (2010)CrossRefGoogle Scholar
  141. 141.
    H.S. Lee, Y.S. Lee, J.Y. Suh, M. Kim, J.S. Yu, Y.W. Cho, Enhanced desorption and absorption properties of eutectic LiB 4–Ca(BH4)2 infiltrated into mesoporous carbon. J. Phys. Chem. C 115(40), 20027–20035 (2011)CrossRefGoogle Scholar
  142. 142.
    P. Javadian, D.A. Sheppard, C.E. Buckley, T.R. Jensen, Hydrogen storage properties of nanoconfined LiBH4-Ca(BH4)2. Nano Energy 11, 96–103 (2015)CrossRefGoogle Scholar
  143. 143.
    P. Javadian, C. Zlotea, C.M. Ghimbeu, M. Latroche, T.R. Jensen, Hydrogen storage properties of nanoconfined LiBH4–Mg2NiH4 reactive hydride composites. J. Phys. Chem. C 119(11), 5819–5826 (2015)CrossRefGoogle Scholar
  144. 144.
    R. Gosalawit-Utke, C. Milanese, P. Javadian, A. Girella, D. Laipple, J. Puszkiel, A.S. Cattaneo, C. Ferrara, J. Wittayakhun, J. Skibsted, T.R. Jensen, A. Marini, T. Klassen, M. Dornheim, 2LiBH4–MgH2–0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage. J. Alloy. Compd. 599, 78–86 (2014)CrossRefGoogle Scholar
  145. 145.
    G. Xia, Q. Meng, Z. Guo, Q. Gu, H. Liu, Z. Liu, X. Yu, Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: Stable reversibility of hydrogen absorption/resorption. Acta Mater. 61(18), 6882–6893 (2013)CrossRefGoogle Scholar
  146. 146.
    M. Christian, K.F. Aguey-Zinsou, Destabilisation of complex hydrides through size effects. Nanoscale 2(12), 2587–2590 (2010)ADSCrossRefGoogle Scholar
  147. 147.
    S. Sartori, K.D. Knudsen, Z. Zhao-Karger, E.G. Bardaji, J. Muller, M. Fichtner, B.C. Hauback, Nanoconfined magnesium borohydride for hydrogen storage applications investigated by SANS and SAXS. J. Phys. Chem. C 114(44), 18785–18789 (2010)CrossRefGoogle Scholar
  148. 148.
    S. Sartori, K.D. Knudsen, A. Roth, M. Fichtner, B.C. Hauback, Small-angle scattering investigations on nanoconfined sodium alanate for hydrogen storage applications. Nanosci. Nanotechnol. Lett. 4(2), 173–177 (2012)CrossRefGoogle Scholar
  149. 149.
    D.T. Shane, R.L. Corey, C. McIntosh, L.H. Rayhel, R.C. Bowman Jr, J.J. Vajo, A.F. Gross, M.S. Conradi, LiBH4 in carbon aerogel nanoscaffolds: an NMR study of atomic motions. J. Phys. Chem. C 114(9), 4008–4014 (2010)CrossRefGoogle Scholar
  150. 150.
    J. Gao, P. Adelhelm, M.H.W. Verkuijlen, C. Rongeat, M. Herrich, P.J.M. Van Bentum, O. Gutfleisch, A.P.M. Kentgens, K.P. De Jong, P.E. De Jongh, Confinement of NaAlH4 in nanoporous carbon: impact on H2 release, reversibility, and thermodynamics. J. Phys. Chem. C 114(10), 4675–4682 (2010)CrossRefGoogle Scholar
  151. 151.
    X. Liu, E.H. Majzoub, V. Stavila, R.K. Bhakta, M.D. Allendorf, D.T. Shane, M.S. Conradi, N. Verdal, T.J. Udovic, S.J. Hwang, Probing the unusual anion mobility of LiBH4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering. J. Mater. Chem. A 1(34), 9935–9941 (2013)CrossRefGoogle Scholar
  152. 152.
    M.H.W. Verkuijlen, P. Ngene, D.W. De Kort, C. Barré, A. Nale, E.R.H. Van Eck, P.J.M. Van Bentum, P.E. De Jongh, A.P.M. Kentgens, Nanoconfined LiBH4 and enhanced mobility of Li+ and BH4 studied by solid-state NMR. J. Phys. Chem. C 116(42), 22169–22178 (2012)CrossRefGoogle Scholar
  153. 153.
    A. Remhof, P. Mauron, A. Züttel, J.P. Embs, Z. Łodziana, A.J. Ramirez-Cuesta, P. Ngene, P. De Jongh, Hydrogen dynamics in nanoconfined lithiumborohydride. J. Phys. Chem. C 117(8), 3789–3798 (2013)CrossRefGoogle Scholar
  154. 154.
    P. Ngene, R. Van Zwienen, P.E. De Jongh, Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition. Chem. Commun. 46(43), 8201–8203 (2010)CrossRefGoogle Scholar
  155. 155.
    P. Ngene, M.H.W. Verkuijlen, Q. Zheng, J. Kragten, P.J.M. Van Bentum, J.H. Bitter, P.E. De Jongh, The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4. Faraday Discuss. 151, 47–58 (2011)ADSCrossRefGoogle Scholar
  156. 156.
    T.K. Nielsen, M. Polanski, D. Zasada, P. Javadian, F. Besenbacher, J. Bystrzycki, J. Skibsted, T.R. Jensen, Improved hydrogen storage kinetics of nanoconfined NaAlH4 catalyzed with TiCl3 nanoparticles. ACS Nano 5(5), 4056–4064 (2011)CrossRefGoogle Scholar
  157. 157.
    K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J.J. Urban, Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10(4), 286–290 (2011)ADSCrossRefGoogle Scholar
  158. 158.
    P. Plerdsranoy, N. Wiset, C. Milanese, D. Laipple, A. Marini, T. Klassen, M. Dornheim, R. Gosalawit-Utke, Improvement of thermal stability and reduction of LiBH4/polymer host interaction of nanoconfined LiBH4 for reversible hydrogen storage. Int. J. Hydrogen Energy 40(1), 392–402 (2015)CrossRefGoogle Scholar
  159. 159.
    R.D. Stephens, A.F. Gross, S.L. Van Atta, J.J. Vajo, F.E. Pinkerton, The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel. Nanotechnology 20 (20) (2009)Google Scholar
  160. 160.
    T.K. Nielsen, P. Javadian, M. Polanski, F. Besenbacher, J. Bystrzycki, J. Skibsted, T.R. Jensen, Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume. Nanoscale 6(1), 599–607 (2014)ADSCrossRefGoogle Scholar
  161. 161.
    J. Gao, P. Ngene, M. Herrich, W. Xia, O. Gutfleisch, M. Muhler, K.P. de Jong, P.E. de Jongh, Interface effects in NaAlH4/carbon nanocomposites for hydrogen storage. Int. J. Hydrogen Energy 39(19), 10175–10183 (2014)CrossRefGoogle Scholar
  162. 162.
    P. Ngene, R. Van Den Berg, M.H.W. Verkuijlen, K.P. De Jong, P.E. De Jongh, Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy Environ. Sci. 4(10), 4108–4115 (2011)CrossRefGoogle Scholar
  163. 163.
    S. Cahen, J.B. Eymery, R. Janot, J.M. Tarascon, Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. J. Power Sources 189(2), 902–908 (2009)CrossRefGoogle Scholar
  164. 164.
    X. Liu, D. Peaslee, C.Z. Jost, T.F. Baumann, E.H. Majzoub, Systematic pore-size effects of nanoconfinement of LiBH4: Elimination of diborane release and tunable behavior for hydrogen storage applications. Chem. Mater. 23(5), 1331–1336 (2011)CrossRefGoogle Scholar
  165. 165.
    P.A. Berseth, A.G. Harter, R. Zidan, A. Blomqvist, C.M. Araújo, R.H. Scheicher, R. Ahuja, P. Jena, Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAIH4. Nano Lett. 9(4), 1501–1505 (2009)ADSCrossRefGoogle Scholar
  166. 166.
    J. Gao, P. Ngene, I. Lindemann, O. Gutfleisch, K.P. De Jong, P.E. De Jongh, Enhanced reversibility of H 2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J. Mater. Chem. 22(26), 13209–13215 (2012)CrossRefGoogle Scholar
  167. 167.
    S. Chumphongphan, U. Filsø, M. Paskevicius, D.A. Sheppard, T.R. Jensen, C.E. Buckley, Nanoconfinement degradation in NaAlH4/CMK-1. Int. J. Hydrogen Energy 39(21), 11103–11109 (2014)CrossRefGoogle Scholar
  168. 168.
    D. Blanchard, A. Nale, D. Sveinbjornsson, T.M. Eggenhuisen, M.H.W. Verkuijlen, T. Vegge, A.P.M. Kentgens, P.E. de Jongh, Nanoconfined LiBH4 as a fast lithium ion conductor. Adv. Funct. Mater. 25(2), 184–192 (2015)CrossRefGoogle Scholar
  169. 169.
    R.W.P. Wagemans, J.H. Van Lenthe, P.E. De Jongh, A.J. Van Dillen, K.P. De Jong, Hydrogen storage in magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127(47), 16675–16680 (2005)CrossRefGoogle Scholar
  170. 170.
    W. Lohstroh, A. Roth, H. Hahn, M. Fichtner, Thermodynamic effects in nanoscale NaAlH4. ChemPhysChem 11(4), 789–792 (2010)CrossRefGoogle Scholar
  171. 171.
    P. Adelhelm, K.P. De Jong, P.E. De Jongh, How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem. Commun. 41, 6261–6263 (2009)CrossRefGoogle Scholar
  172. 172.
    J.A. Teprovich, M.S. Wellons, R. Lascola, S.-J. Hwang, P.A. Ward, R.N. Compton, R. Zidan, Synthesis and characterization of lithium-doped fullerane (Lix–C60–Hy) for reversible hydrogen storage. Nano Lett. 12(2), 582–589 (2012)ADSCrossRefGoogle Scholar
  173. 173.
    P. Mauron, M. Gaboardi, D. Pontiroli, A. Remhof, M. Ricco, A. Züttel, Hydrogen desorption kinetics in metal intercalated fullerides. J. Phys. Chem. C 119(4), 1714–1719 (2015)CrossRefGoogle Scholar
  174. 174.
    B. Bogdanovic, M. Schwickardi, J. Alloys Compd. 253–254, 1 (1997)CrossRefGoogle Scholar
  175. 175.
    B. Bogdanovic, S. Sandrock, Catalyzed complex metal hydrides, MRS BULLETIN/SEPTEMBER 2002, pp 712–716Google Scholar
  176. 176.
    G. Sandrock, K. Gross, G. Thomas, J. Alloys Compd. 339, 299–308 (2002)CrossRefGoogle Scholar
  177. 177.
    W. Luo, K.J. Gross, J. Alloys Compd. 385, 224–231 (2004)CrossRefGoogle Scholar
  178. 178.
    A. Leon, O. Kircher, M. Fichtner, J. Rothe, D. Schild, J. Phys. Chem. B 110, 1192–1200 (2006)CrossRefGoogle Scholar
  179. 179.
    M.P. Pitt, P.E. Vullum, M.H. Sørby, H. Emerich, M. Paskevicius, C.E. Buckley, J. Walmsley, R. Holmestad, B.C. Hauback, Hydrogen absorption kinetics of the transition-metal-chloride enhanced NaAlH4 system. J. Phys. Chem. C 116(27), 14205–14217 (2012)CrossRefGoogle Scholar
  180. 180.
    Z.O. Kocabas-Atakli, E. Callini, S. Kato, and A.Züttel, to be submitted to J. Alloys Compd. (2015)Google Scholar
  181. 181.
    Z.Ö.K. Atakli, E. Callini, S. Kato, A. Züttel, Catalyzed hydrogensorption mechanism in alkali alanates, Accepted PCCP (2015)Google Scholar
  182. 182.
    T. Sun, H. Wang, Q. Zhang, D. Sun, X. Yao, M. Zhu, J. Mater. Chem. 21, 9179–9184 (2011)CrossRefGoogle Scholar
  183. 183.
    H. Hagemann, R. Cerny, Dalton Trans. 39, 6006–6012 (2010)CrossRefGoogle Scholar
  184. 184.
    Z. Lodziana, A. Züttel, P. Zielinski, J. Phys. Condens. Matter 20(46), 465210–465217 (2008)ADSCrossRefGoogle Scholar
  185. 185.
    D. Blanchard, Q. Shi, C.B. Boothroyd, T. Vegge, J. Phys. Chem. C 113, 14059–14066 (2009)CrossRefGoogle Scholar
  186. 186.
    R.G. Egdell, J.C. Green, Inorg. Chim. Acta 361, 462–466 (2008)CrossRefGoogle Scholar
  187. 187.
    C.J. Dain, A.J. Downs, D.W.H. Rankin, Angew. Chem. Int. Ed. Engl. 21(7), 534–535 (1982)CrossRefGoogle Scholar
  188. 188.
    E. Callini, A. Borgschulte, C.L. Hugelshofer, A.J. Ramirez-Cuesta, A. Züttel, J. Phys. Chem. C 118, 77–84 (2014)CrossRefGoogle Scholar
  189. 189.
    A. Remhof et al., J. Phys: Conf. Ser. 340, 012111–012118 (2012)ADSGoogle Scholar
  190. 190.
    D.B. Ravnsbæk, L.H Sørensen, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Screening of metal borohydrides by mechanochemistry and diffraction, Angew. Chem. Int. Ed. 51, 3582–3586 (2012)Google Scholar
  191. 191.
    H.-W. Li, Y. Yan, S. Orimo, A. Züttel, C.M. Jensen, Energies 4(1), 185–214 (2011)CrossRefGoogle Scholar
  192. 192.
    J.J. Reilly, R.H. Wiswall, Inorg. Chem. 6, 2220–2223 (1967)CrossRefGoogle Scholar
  193. 193.
    Y.W. Cho, J.-H. Shim, B.-J. Lee, CALPHAD 30, 65–69 (2006)CrossRefGoogle Scholar
  194. 194.
    X.-D. Kang, P. Wang, L.-P. Ma, H.-M. Cheng, Appl. Phys. A Mater. Sci. Process. 89, 963–966 (2007)ADSCrossRefGoogle Scholar
  195. 195.
    O. Friedrichs, J.W. Kim, A. Remhof, F. Buchter, A. Borgschulte, D. Wallacher, Y.W. Cho, M. Fichtner, K.H. Oh, A. Zuttel, Phys. Chem. Chem. Phys. 11, 1515–1520 (2009)CrossRefGoogle Scholar
  196. 196.
    S.-A. Jin, J.-H. Shim, Y.W. Cho, K.-W. Yi, O. Zabara, M. Fichtner, Scripta Mater. 58, 963–965 (2008)CrossRefGoogle Scholar
  197. 197.
    M. Meggouh, D.M. Grant, G.S. Walker, J. Phys. Chem. C 115(44), 22054–22061 (2011)CrossRefGoogle Scholar
  198. 198.
    D.B. Ravnsbæk, T.R. Jensen, J. Phys. Chem. Solids 71, 1144–1149 (2010)ADSCrossRefGoogle Scholar
  199. 199.
    Y. Kojima, Y. Kawai, M. Matsumoto, T. Haga, J. Alloys Comp. 462, 275–278 (2008)CrossRefGoogle Scholar
  200. 200.
    S.-S. Liu, L.-X. Sun, Y. Zhang, F. Xu, J. Zhang, H.-L. Chu, M.-Q. Fan, T. Zhang, X.-Y. Song, J.P. Grolier, Int. J. Hydrogen Energy 34, 8079–8085 (2009)CrossRefGoogle Scholar
  201. 201.
    D.B. Ravnsbæk, T.R. Jensen, J. Appl. Phys. 111, 112621 (2012)ADSCrossRefGoogle Scholar
  202. 202.
    B.R.S. Hansen, D.B. Ravnsbæk, D. Reed, D. Book, C. Gundlach, J. Skibsted, T.R. Jensen, J. Phys. Chem. C 117, 7423–7432 (2013)CrossRefGoogle Scholar
  203. 203.
    S. Soru; A. Taras, C. Pistidda, C. Milanese, M. Bonatto, C. Masolo, P. Nolis, M.D. Baró, A. Marini, M. Tolkiehn, M. Dornheim, S. Enzo, G. Mulas, S. Garroni, S, J. Alloys Compd. 615(S1), S693–S697 (2014)Google Scholar
  204. 204.
    G. Barkhordarian, T. Klassen, M. Dornheim, R. Bormann, J. Alloy. Compd. 440, L18–L21 (2007)CrossRefGoogle Scholar
  205. 205.
    U. Bösenberg, S. Doppiu, L. Mosegaard, A. Borgschulte, N. Eigen, G. Barkhordarian, T.R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim, R. Bormann, Acta Mater. 55, 3951–3958 (2007)CrossRefGoogle Scholar
  206. 206.
    J. Jepsen, C. Milanese, A. Girella, G.A. Lozano, C. Pistidda, J.M. Bellosta von Colbe, A. Marini, T. Klassen, M. Dornheim, Int J Hydrogen Energy 38, 8357–8366 (2013)CrossRefGoogle Scholar
  207. 207.
    R. Gosalawit-Utke, C. Milanese, T.K. Nielsen, F. Karimi, I. Saldan, K. Pranzas, T.R. Jensen, A. Marini, T. Klassen, M. Dornheim, Int. J. Hydrogen Energy 38, 1932–1942 (2013)CrossRefGoogle Scholar
  208. 208.
    M. Hirscher (ed), Strategies to Alter the Reaction Enthalpies of Hydrides in Handbook of Hydrogen Storage (Wiley, Co, Weinheim, 2010)Google Scholar
  209. 209.
    U. Bösenberg, D.B. Ravnsbaek, H. Hagemann, V. D’Anna, C.B. Minella, C. Pistidda, W. Van Beek, T.R. Jensen, R. Bormann, M. Dornheim, J. Phys. Chem. C 114, 15212–15217 (2010)CrossRefGoogle Scholar
  210. 210.
    U. Bösenberg, U. Vainio, P.K. Pranzas, J.M. Bellosta von Colbe, G. Goerigk, E. Welter, M. Dornheim, A. Schreyer, R. Bormann, Nanotechnology 20, 204003 (2009)ADSCrossRefGoogle Scholar
  211. 211.
    U. Bösenberg, J.W. Kim, D. Gosslar, N. Eigen, T.R. Jensen, J.M. Bellosta von Colbe, Y. Zhou, M. Dahms, D.H. Kim, R. Günther, Y.W. Cho, K.H. Oh, T. Klassen, M. Dornheim, Y.W. Cho, Acta Mater. 58, 3381–3389 (2010)CrossRefGoogle Scholar
  212. 212.
    P.E. Pinkerton, M.S. Meyer, J. Alloys Compd. 464, L1 (2008)CrossRefGoogle Scholar
  213. 213.
    J.-H. Lim, J.-H. Shim, Y.-S. Lee, Y.W. Cho, J. Lee, Scripta Mater. 59, 1251 (2008)CrossRefGoogle Scholar
  214. 214.
    J.-H. Lim, J.-H. Shim, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, J. Lee, Int. J. Hydrogen Energy 35, 6578 (2010)CrossRefGoogle Scholar
  215. 215.
    S.-A. Jin, Y.-S. Lee, J.-H. Shim, Y.W. Cho, J. Phys. Chem. C 112, 9520 (2008)CrossRefGoogle Scholar
  216. 216.
    P. Mauron, M. Bielmann, A. Remhof, A. Züttel, J.-H. Shim, Y.W. Cho, J. Phys. Chem. C 114, 16801 (2010)CrossRefGoogle Scholar
  217. 217.
    J.-H. Shim, Y.-S. Lee, J.-Y. Suh, W. Cho, S.S. Han, Y.W. Cho, J. Alloys Compd. 510, L9 (2012)CrossRefGoogle Scholar
  218. 218.
    W. Luo, J. Alloys Compd. 381, 284 (2004)CrossRefGoogle Scholar
  219. 219.
    P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, Nature 420, 302–304 (2002)ADSCrossRefGoogle Scholar
  220. 220.
    Z. Xiong, G. Wu, J. Hu, P. Chen, Adv. Mater. 16, 1522–1525 (2004)CrossRefGoogle Scholar
  221. 221.
    H.Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe, H. Fujii, J. Phys. Chem. B 108, 8763–8765 (2004)CrossRefGoogle Scholar
  222. 222.
    Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towata, S. Orimo, J. Alloy. Compd. 404–406, 396–398 (2005)CrossRefGoogle Scholar
  223. 223.
    J. Wang, J. Hu, Y. Liu, Z. Xiong, G. Wu, H. Pan, P. Chen, J. Mater. Chem. 19, 2141–2146 (2009)CrossRefGoogle Scholar
  224. 224.
    J. Wang, T. Liu, G. Wu, W. Li, Y. Liu, C.M. Araújo, R.H. Scheicher, A. Blomqvist, R. Ahuja, Z. Xiong, P. Yang, M. Gao, H. Pan, P. Chen, Angew. Chem. Int. Ed. 48, 5828–5832 (2009)CrossRefGoogle Scholar
  225. 225.
    J. Wang, G. Wu, Y.S. Chua, J. Guo, Z. Xiong, Y. Zhang, M. Gao, H. Pan, P. Chen, ChemSusChem 4, 1622–1628 (2011)CrossRefGoogle Scholar
  226. 226.
    J. Hu, Y. Liu, G. Wu, Z. Xiong, Y.S. Chua, P. Chen, Chem. Mater. 20, 4398–4402 (2008)CrossRefGoogle Scholar
  227. 227.
    B. Li, Y. Liu, C. Li, M. Gao, H. Pan, J. Mater. Chem. A 2, 3155–3162 (2014)CrossRefGoogle Scholar
  228. 228.
    H. Cao, G. Wu, Y. Zhang, Z. Xiong, J. Qiu, P. Chen, J. Mater. Chem. A 2, 15816–15822 (2014)CrossRefGoogle Scholar
  229. 229.
    H.-S. Lee, Y.-S. Lee, J.-Y. Suh, M. Kim, J.-S. Yu, Y.W. Cho, J. Phys. Chem. C 115, 20027 (2011)CrossRefGoogle Scholar
  230. 230.
    K. Park, H.-S. Lee, A. Remhof, Y.-S. Lee, Y. Yan, M.-Y. Kim, S.J. Kim, A. Züttel, Y.W. Cho, Int. J. Hydrogen Energy 38, 9263 (2013)CrossRefGoogle Scholar
  231. 231.
    J.-H. Shim, J.-H. Lim, S. Rather, Y.-S. Lee, D. Reed, Y. Kim, D. Book, Y.W. Cho, J. Phys. Chem. Lett. 1, 59 (2010)CrossRefGoogle Scholar
  232. 232.
    K.-B. Kim, J.-H. Shim, Y.W. Cho, K.H. Oh, Chem. Commun. 47, 9831 (2011)CrossRefGoogle Scholar
  233. 233.
    J.W. Kim, K.-B. Kim, J.-H. Shim, Y.W. Cho, K.H. Oh, Microsc. Microanal. 20, 1798 (2014)ADSCrossRefGoogle Scholar
  234. 234.
    J. Hu, Y. Liu, G. Wu, Z. Xiong, P. Chen, J. Phys. Chem. C 111, 18439 (2007)CrossRefGoogle Scholar
  235. 235.
    M. Taube, D. Rippin, W. Knecht, D. Hakimifard, B. Milisavljevic, N. Gruenefelder, A prototype truck powered by hydrogen from organic liquid hydrides. Int. J. Hydrogen Energy 9, 595–599 (1985)CrossRefGoogle Scholar
  236. 236.
    S. Hodoshima, H. Arai, S. Takaiwa, Y. Saito, Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle. Int. J. Hydrogen Energy 28, 1255–1262 (2003)CrossRefGoogle Scholar
  237. 237.
    M. Chandra, Q. Xu, A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 156, 190–194 (2006)CrossRefGoogle Scholar
  238. 238.
    Z. Huang, X. Chen, T. Yisgedu, J.-C. Zhao, S.G. Shore, High-capacity hydrogen release through hydrolysis of NaB3H8. Int. J. Hydrogen Energy 36, 7038–7042 (2011)CrossRefGoogle Scholar
  239. 239.
    D. Schubert, D. Neiner, M. Bowden, S. Whittemore, J. Holladay, Z. Huang, T. Autrey, Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids. J. Alloys Compd. 645 (Supplement 1), S196–S199 (2015). doi:10.1016/j.jallcom.2015.01.063
  240. 240.
    A. Cooper, Design and development of new carbon-based sorbent Systems for an effective containment of hydrogen. Technical Report, DOE Award No. DE-FC36-04GO14006, Department of Energy, Washington, DC (2012), pp 2231–2233Google Scholar
  241. 241.
    P.G. Campbell, L.N. Zakharov, D.J. Grant, D.A. Dixon, S.-Y. Liu, Hydrogen storage by Boron–Nitrogen heterocycles: a simple route for spent fuel regeneration. J. Am. Chem. Soc. 132(10), 3289–3291 (2010)CrossRefGoogle Scholar
  242. 242.
    S. Whittemore, M. Bowden, A. Karkamkar, K. Parab, D. Neiner, S.-Y. Liu, D. Dixon, T. Autrey, Exploring the use of carbon, nitrogen, and boron containing heterocycles in liquid hydrogen storage. in ACS Division of Fuel Chemistry Proceedings (2014)Google Scholar
  243. 243.
    Z. Wang, J. Belli, C.M. Jensen, Homogenous dehydrogenation of liquid organic carriers catalyzed by an iridium PCP complex. Faraday Discuss. 151, 297–305 (2011)ADSCrossRefGoogle Scholar
  244. 244.
    S. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Chem. Rev. 107, 4111–4132 (2007)CrossRefGoogle Scholar
  245. 245.
    D.K. Slattery, M.D. Hampton, Complex hydrides for hydrogen storage. in Proceedings of the 2002 U.S. Hydrogen Program Review, NREL/CP-610-32405, pp 1–9 (2002)Google Scholar
  246. 246.
    E. Ashby, W. Foster, Concerning the existence of “triple metal hydrides”. The reactions of lithium aluminum hydride with diborane. J. Am. Chem. Soc. 88(14), 3248–3255 (1966)CrossRefGoogle Scholar
  247. 247.
    A.J. Downs, L.A. Jones, Polyhedron 13, 2401 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elsa Callini
    • 1
    • 2
  • Zuleyha Özlem Kocabas Atakli
    • 2
  • Bjørn C. Hauback
    • 3
  • Shin-ichi Orimo
    • 12
  • Craig Jensen
    • 13
  • Martin Dornheim
    • 10
  • David Grant
    • 11
  • Young Whan Cho
    • 9
  • Ping Chen
    • 7
  • Bjørgvin Hjörvarsson
    • 14
  • Petra de Jongh
    • 6
  • Claudia Weidenthaler
    • 15
  • Marcello Baricco
    • 4
  • Mark Paskevicius
    • 5
  • Torben R. Jensen
    • 5
  • Mark E. Bowden
    • 8
  • Thomas S. Autrey
    • 8
  • Andreas Züttel
    • 1
    • 2
  1. 1.Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC)École polytechnique fédérale de LausanneSionSwitzerland
  2. 2.EMPA Materials Science and TechnologySionSwitzerland
  3. 3.Physics DepartmentInstitute for Energy TechnologyKjellerNorway
  4. 4.Department of Chemistry and NISUniversity of TurinTurinItaly
  5. 5.Department of Chemistry, Center for Materials Crystallography, Interdisciplinary Nanoscience CenterAarhus UniversityAarhus CDenmark
  6. 6.Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  7. 7.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  8. 8.Pacific Northwest National LaboratoryRichlandUSA
  9. 9.Future Convergence Research Division, High Temperature Energy Materials Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
  10. 10.Department of Nanotechnology, Materials TechnologyHelmholtz-Zentrum GeesthachtGeesthachtGermany
  11. 11.University ParkNottinghamUK
  12. 12.WPI Advanced Institute for Materials Research (WPI-AIMR), Institute for Materials ResearchTohoku UniversitySendaiJapan
  13. 13.Department of ChemistryUniversity of Hawaii at ManoaHonoluluUSA
  14. 14.Department of Physics and Astronomy, Materials PhysicsUppsalaSweden
  15. 15.Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations