Advertisement

Applied Physics A

, 122:377 | Cite as

Localized acoustic surface modes

  • Mohamed Farhat
  • Pai-Yen Chen
  • Hakan Bağcı
Article
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics

Abstract

We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

Keywords

Bulk Modulus Acoustic Field Equivalent Model Acoustic Mode Resonance Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially funded by King Abdulaziz City for Science and Technology’s TIC (Technology Innovation Center) for Solid-state Lighting at KAUST.

References

  1. 1.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  2. 2.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)Google Scholar
  3. 3.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824–830 (2003)CrossRefADSGoogle Scholar
  4. 4.
    J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuator B Chem. 54, 3–15 (1999)CrossRefGoogle Scholar
  5. 5.
    D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 4, 83–91 (2010)CrossRefADSGoogle Scholar
  6. 6.
    S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)CrossRefADSGoogle Scholar
  7. 7.
    N. Engheta, Science 317, 1698–1702 (2007)CrossRefADSGoogle Scholar
  8. 8.
    G. Lozano et al., Light Sci. Appl. 2, e66 (2013)CrossRefGoogle Scholar
  9. 9.
    H.A. Atwater, A. Polman, Nat. Mater. 9, 205–213 (2010)CrossRefADSGoogle Scholar
  10. 10.
    L. Ju et al., Nat. Nanotech. 6, 630–634 (2011)CrossRefADSGoogle Scholar
  11. 11.
    M. Farhat, S. Guenneau, H. Bağcı, Phys. Rev. Lett. 111, 237404 (2013)CrossRefADSGoogle Scholar
  12. 12.
    J. Schiefele, J. Pedros, F. Sols, F. Calle, F. Guinea, Phys. Rev. Lett. 111, 237405 (2013)CrossRefADSGoogle Scholar
  13. 13.
    P.Y. Chen, M. Farhat, A. Alù, Phys. Rev. Lett. 106, 105503 (2011)CrossRefADSGoogle Scholar
  14. 14.
    G.V. Naik, V.M. Shalaev, A. Boltasseva, Adv. Mater. 25, 3264–3294 (2013)CrossRefGoogle Scholar
  15. 15.
    J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Science 305, 847–848 (2004)CrossRefADSGoogle Scholar
  16. 16.
    A.P. Hibbins, B.R. Evans, J.R. Sambles, Science 308, 670–672 (2005)CrossRefADSGoogle Scholar
  17. 17.
    F.J. Garcia de Abajo, J.J. Saenz, Phys. Rev. Lett. 95, 233901 (2005)CrossRefADSGoogle Scholar
  18. 18.
    F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, J. Opt. A Pure Appl. Opt. 7, 97–101 (2005)CrossRefADSGoogle Scholar
  19. 19.
    M.A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, Opt. Express 19, 14860–14870 (2011)CrossRefADSGoogle Scholar
  20. 20.
    R. Stanley, Nat. Photonics 6, 409–411 (2012)CrossRefADSGoogle Scholar
  21. 21.
    P.A. Huidobro et al., Phys. Rev. X 4, 021003 (2014)Google Scholar
  22. 22.
    A. Pors, E. Moreno, L. Martin-Moreno, J.B. Pendry, F.J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Z. Liu et al., Science 289, 1734–1736 (2000)CrossRefADSGoogle Scholar
  24. 24.
    R.V. Craster, S. Guenneau (eds.), Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking (Springer, Berlin, 2013)Google Scholar
  25. 25.
    G. Goffaux et al., Phys. Rev. Lett. 88, 225502 (2002)CrossRefADSGoogle Scholar
  26. 26.
    J. Li, C.T. Chan, Phys. Rev. E 70, 055602(R) (2004)CrossRefADSGoogle Scholar
  27. 27.
    S. Yang et al., Phys. Rev. Lett. 93, 024301 (2004)CrossRefADSGoogle Scholar
  28. 28.
    J. Christensen, A.I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, F.J. Garcia-Vidal, Nat. Phys. 3, 851–852 (2007)CrossRefGoogle Scholar
  29. 29.
    M. Farhat, S. Enoch, S. Guenneau, A.B. Movchan, Phys. Rev. Lett. 101, 134501 (2008)CrossRefADSGoogle Scholar
  30. 30.
    M. Farhat et al., Phys. Rev. E 77, 046308 (2008)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    S. Zhang, L. Yin, N. Fang, Phys. Rev. Lett. 102, 194301 (2009)CrossRefADSGoogle Scholar
  32. 32.
    M. Farhat, S. Guenneau, S. Enoch, EPL Europhys. Lett. 91, 54003 (2010)CrossRefADSGoogle Scholar
  33. 33.
    P.Y. Chen, M. Farhat, S. Guenneau, S. Enoch, A. Alù, Appl. Phys. Lett. 99, 191913 (2011)CrossRefADSGoogle Scholar
  34. 34.
    B.I. Popa, L. Zigoneanu, S.A. Cummer, Phys. Rev. Lett. 106, 253901 (2011)CrossRefADSGoogle Scholar
  35. 35.
    I. Spiousas, D. Torrent, J. Sanchez-Dehesa, Appl. Phys. Lett. 98, 244102 (2011)CrossRefADSGoogle Scholar
  36. 36.
    Z. He et al., Phys. Rev. B 83, 132101 (2011)CrossRefADSGoogle Scholar
  37. 37.
    J. Christensen, Z. Liang, M. Willatzen, Phys. Rev. B 88, 100301(R) (2013)CrossRefADSGoogle Scholar
  38. 38.
    J. Christensen, Z. Liang, M. Willatzen, AIP Adv. 4, 124301 (2014)CrossRefADSGoogle Scholar
  39. 39.
    B. Diaconescu et al., Nature 448, 57–59 (2007)CrossRefADSGoogle Scholar
  40. 40.
    M. Smerieri et al., Phys. Rev. Lett. 113, 186804 (2014)CrossRefADSGoogle Scholar
  41. 41.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667–669 (1998)CrossRefADSGoogle Scholar
  42. 42.
    M.H. Lu et al., Phys. Rev. Lett. 99, 174301 (2007)CrossRefADSGoogle Scholar
  43. 43.
    J. Christensen, L. Martin-Moreno, F.J. Garcia-Vidal, Phys. Rev. Lett. 101, 014301 (2008)CrossRefADSGoogle Scholar
  44. 44.
    A.F. Harvey, IRE Trans. Microw. Theory Tech. 8, 30 (1960)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Division of Computer, Electrical, and Mathematical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  2. 2.Department of Electrical and Computer EngineeringWayne State UniversityDetroitUSA

Personalised recommendations