Skip to main content

Advertisement

Log in

Analysis, experiment, and correlation of a petal-shaped actuator based on dielectric elastomer minimum-energy structures

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Releasing a bimaterial system, which consists of a pre-stretched dielectric elastomer membrane attached on a flexible frame, transforms a planar structure into a 3D structure through buckling. The buckled structure can deform further upon applying of a voltage, giving rise to the so-called dielectric elastomer minimum-energy structures (DEMES). Simple and easy-to-use theory and model would simplify the tedious trial-and-error designing process. We describe an extended model accounting for nonlinear rubber elasticity, pre-stretch, and the concentrated transverse load of a bending beam DEMES actuator. We design and fabricate a petal-shaped actuator with three petals. Elevation of a 1-g mass upward 7 mm is demonstrated upon application of 7000 V. Good correlation is achieved between model prediction and experimental measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100 %. Science 287, 836–839 (2000)

    Article  ADS  Google Scholar 

  2. G. Kofod, Dielectric elastomer actuators, Ph.D. thesis, (The Technical University of Denmark, 2001)

  3. C. Keplinger, J.Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013)

    Article  ADS  Google Scholar 

  4. M. Kollosche, H. Stoyanov, S. Laflammeb, G. Kofod, Strongly enhanced sensitivity in elastic capacitive strain sensors. J. Mater. Chem. 21(23), 8292–8294 (2011)

    Article  Google Scholar 

  5. J.Y. Sun, C. Keplinger, C. Whitesides et al., Ionic skin. Adv. Mater. 26, 7608–7614 (2014)

    Article  Google Scholar 

  6. R. Pelrine, R. Kornbluh, J. Eckerle, P. Jeuck, S. Oh, Q. Pei, Dielectric elastomer: generator mode fundamentals and applications. Proc. SPIE 4329, 148–156 (2001)

    Article  ADS  Google Scholar 

  7. T.G. McKay, B. O’Brien, I.A. Anderson et al., Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 142903 (2011)

    Article  ADS  Google Scholar 

  8. T.G. McKay, B. O’Brien, I.A. Anderson et al., An integrated, soft-priming dielectric elastomer generator. Appl. Phys. Lett. 97, 062911 (2010)

    Article  ADS  Google Scholar 

  9. C. Keplinger, T.F. Li, R. Baumgartner, Z.G. Suo, S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8(2), 285–288 (2012)

    Article  ADS  Google Scholar 

  10. F. Carpi, S. Bauer, D. De Rossi, Stretching dielectric elastomer performance. Science 330(6012), 1759–1761 (2010)

    Article  ADS  Google Scholar 

  11. Z. Yu, W. Yuan, P. Brochu, B. Chen, Z. Liu, Q. Pei, Large-strain, rigid-to-rigid deformation and bistable electroctive polymers. Appl. Phys. Lett. 95, 192904 (2009)

    Article  ADS  Google Scholar 

  12. C. Jordi, S. Michel, E. Fink, Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspir. Biomim. 5(2), 191–211 (2010)

    Article  Google Scholar 

  13. M. Molnari, Aero-structural optimization of morphing airfoils for adaptive wings. J. Intell. Mater. Syst. Struct. 22(10), 1075–1089 (2011)

    Article  Google Scholar 

  14. F. Carpi, D.D. Rossi, R. Kornbluh, R. Pelrine, P.S. Larsen, Dielectric elastomers as electromechanical transducers: fundamental (Elsevier, Amsterdam, 2011), pp. 193–319

    Google Scholar 

  15. P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010)

    Article  Google Scholar 

  16. I.A. Anderson, T.A. Gisby, T.G. Mckay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 2–17 (2012)

    Article  Google Scholar 

  17. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, 25th Anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26(1), 149–162 (2014)

    Article  Google Scholar 

  18. J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl, S. Nowak, E. Orselli, X. Quan, D. Schapeler, W. Sutherland, J. Wagner, Electroactive polymers: developments of and perspectives for dielectric elastomers. Angew. Chem. Int. Ed 52(36), 9409–9421 (2013)

    Article  Google Scholar 

  19. S. Rosset, H.R. Shea, Fabrication and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110(2), 281 (2013)

    Article  ADS  Google Scholar 

  20. G. Kofod, W. Wirge, M. Paajanen, S. Bauer, Energy minimization for self-organized structure formation and actuation. Appl. Phys. Lett. 90, 081916 (2007)

    Article  ADS  Google Scholar 

  21. G. Kofod, M. Paajanen, S. Bauer, Self-organized minimum-energy structures for dielectric elastomer actuators. Appl. Phys. A 85, 141–143 (2007)

    Article  ADS  Google Scholar 

  22. O.A. Araromi, I. Gavrilovich, J. Shintake, S. Rosset, H.R. Shea, Towards a deployable satellite gripper based on multisegment dielectric elastomer minimum energy structures. Proc. SPIE 9056(90562G), 1–10 (2014)

    Google Scholar 

  23. J. Zhao, J. Niu, D. McCoul, Z. Ren, Q. Pei, Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. Appl. Phys. Lett. 106, 133504 (2015)

    Article  ADS  Google Scholar 

  24. C.H. Neguyen, G. Alici, R. Mutlu, A compliant translational mechanism based on dielectric elastomer actuators. J. Mech. Des. 136, 061009-1–061009-9 (2014)

    Google Scholar 

  25. M. Follador, A.T. Conn, B. Mazzolai et al., Active-elastic bistable minimum energy structures. Appl. Phys. Lett. 105, 141903 (2014)

    Article  ADS  Google Scholar 

  26. M.T. Petralia, R.J. Wood, Fabrication and analysis of dielectric-elastomer minimum-energy structures for highly-deformable soft robotic systems, presented at the Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010

  27. K. Kadooka, M. Taya, K. Naito, Modeling of a corrugated dielectric elastomer actuator for artificial muscle applications. Electroact. Polym. Actuators Devices 9430, 943020 (2015)

    Google Scholar 

  28. J. Wissman, L. Finkenauer, L. Deseri et al., Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes. J. Appl. Phys. 116, 144905 (2014)

    Article  ADS  Google Scholar 

  29. S. Rosset, O.A. Araromi, J. Shintake et al., Model and design of dielectric elastomer minimum energy structures. Smart Mater. Struct. 23, 085021 (2014)

    Article  ADS  Google Scholar 

  30. J. Shintake, S. Rosset, B.E. Schubert et al., A foldable antagonistic actuator. IEEE ASME Trans. Mechatron. 20(5), 1997–2008 (2015)

    Article  Google Scholar 

  31. X. Zhao, Z. Suo, Method to analyze programmable deformation of dielectric elastomer layers. Appl. Phys. Lett. 93, 251902 (2008)

    Article  ADS  Google Scholar 

  32. B. O’Brien, T. McKay, E. Calius et al., Finite element modeling of dielectric elastomer minimum energy structures. Appl. Phys. A 94, 507–514 (2009)

    Article  ADS  Google Scholar 

  33. S.J.A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, Z. Suo, Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. Part B Polym. Phys. 49, 504–515 (2011)

    Article  ADS  Google Scholar 

  34. S. Timoshenko, Analysis of bi-metal thermostats. Opt. Soc. Am. 11, 233–235 (1925)

    Article  ADS  Google Scholar 

  35. X. Zhao, W. Hong, Z. Suo, Electromechanical coexistent states and hysteresis in dielectric elastomer. Phys. Rev. B 76, 134113 (2007)

    Article  ADS  Google Scholar 

  36. J. Zhou, W. Hong, X. Zhao, Z. Zhang, Z. Suo, Propagation of instability in dielectric elastomers. Int. J. Solids Struct. 45, 3739–3750 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by Natural Science Foundation of China (Grants 11372239, 11472210 and 11321062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhang, Y., Zhang, L. et al. Analysis, experiment, and correlation of a petal-shaped actuator based on dielectric elastomer minimum-energy structures. Appl. Phys. A 122, 323 (2016). https://doi.org/10.1007/s00339-016-9858-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9858-4

Keywords

Navigation