Nanotechnologies for the restoration of alum-treated archaeological wood


The project Saving Oseberg is funded by the Norwegian State with the aim to preserve the Viking Age wooden objects from the Oseberg burial mound. They were excavated in 1904 near Tønsberg, Norway, and many have been treated in the past with alum salts (KAl(SO4)2·12H2O). Alum was widely used during the early 1900s as a treatment for archaeological wood to prevent shrinkage and impart strength. In the 1990s, conservators observed an alarming condition of the objects. Initial investigations showed that the alum treatment has initiated a slow but ongoing deterioration process, attacking the wood for over 100 years. Today, the artefacts are highly acidic and have significantly reduced mechanical strength. In the last decade, the use of non-aqueous alkaline nanoparticle dispersions has provided successful results for the protection of cellulose-based materials. Alum-treated archaeological wood samples from Oseberg, with a pH ≤ 2, have been treated with alkaline nanoparticle dispersions, and the effects of the treatment have been evaluated by thermal analysis (TG-DTG), infrared spectroscopy (ATR-FTIR) and X-ray microtomography (micro-CT) analyses. In this contribution, the preliminary results will be presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    N. Bonde, A.E. Christensen, Antiquity 67, 575 (1993)

    Article  Google Scholar 

  2. 2.

    A.W. Brøgger, H. Shetelig, H. Falk, Osebergfundet (Distribuert ved Universitetets Oldsaksamling, Oslo, 1917)

    Google Scholar 

  3. 3.

    B.B. Christensen, Studies in Museum Technology 1: The Conservation of Waterlogged Wood in the National Museum of Denmark (The National Museum of Denmark, Copenhagen, 1970)

    Google Scholar 

  4. 4.

    S. Braovac, H. Kutzke, J. Cult. Herit. 13, 203 (2012)

    Article  Google Scholar 

  5. 5.

    G. Almkvist, I. Persson, Holzforschung 62(6), 694 (2008)

    Google Scholar 

  6. 6.

    R. Giorgi, D. Chelazzi, P. Baglioni, Langmuir 21, 10743 (2005)

    Article  Google Scholar 

  7. 7.

    Y. Fors, M. Sandstrom, Chem. Soc. Rev. 35, 399 (2006)

    Article  Google Scholar 

  8. 8.

    P. Calvini, V. Grosso, M. Hey, L. Rossi, L. Santucci, Pap. Conserv. 12, 35 (1988)

    Article  Google Scholar 

  9. 9.

    G. Poggi, N. Toccafondi, L.N. Melita, J.C. Knowles, L. Bozec, R. Giorgi, P. Baglioni, Appl. Phys. A 114, 685 (2014)

    ADS  Article  Google Scholar 

  10. 10.

    P. Baglioni, D. Chelazzi, Nanoscience for the Conservation of Works of Art (RSC Publishing, London, 2013)

    Book  Google Scholar 

  11. 11.

    P. Baglioni, R. Giorgi, Soft Matter 2, 293 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    P. Baglioni, D. Chelazzi, R. Giorgi, G. Poggi, in Encyclopedia of Surface and Colloid Science, 2nd edn., ed. by P. Somasundaran (Taylor & Francis, New York, 2012), pp. 1–16

    Google Scholar 

  13. 13.

    D. Chelazzi, R. Giorgi, P. Baglioni, Macromol. Symp. 238, 30 (2006)

    Article  Google Scholar 

  14. 14.

    C.F. Forney, D.G. Brandl, HortTechnology 2, 52 (1992)

    Google Scholar 

  15. 15.

    J.W. Baty, W. Minter, S. Yong Lee, Book Pap. Group Annu. 29, 113 (2010)

    Google Scholar 

  16. 16.

    M. Földvári, in Handbook of Thermogravimetric System of Minerals and its Use in Geological Practice, Occasional Papers of the Geological Institute of Hungary, vol 213 (Geological Institute of Hungary, Budapest, 2011), pp. 216–217

  17. 17.

    H.A. Shnawa, Mater. Sci. Appl. 2, 692 (2011)

    Google Scholar 

  18. 18.

    K.K. Pandey, J. Appl. Polym. Sci. 71, 1969 (1999)

    Article  Google Scholar 

  19. 19.

    K.K. Pandey, A.J. Pitman, Int. Biodeterior. Biodegradation 52, 151 (2003)

    Article  Google Scholar 

  20. 20.

    B. Mohebby, Int. Biodeterior. Biodegradation 55, 247 (2005)

    Article  Google Scholar 

  21. 21.

    Y. Liu, A. Wang, J.J. Freeman, in Raman, MIR, and NIR Spectroscopic study of calcium sulfates: gypsum, bassanite, and anhydrite, 40th Lunar and Planetary Science Conference (2009)

  22. 22.

    F.A. Andersen, L. Brečević, Acta Chem. Scand. 45, 1018 (1991)

    Article  Google Scholar 

Download references


F.A., R.G. and P.B. wish to thank Dr. Francesca Loglio and Dr. Samuele Ciattini of the CRIST center, Centro di Cristallografia Strutturale, University of Florence, for X-ray microtomography analysis. CSGI, Center for Colloid and Surface Science, is also gratefully acknowledged for financial support. This work was undertaken by Saving Oseberg, a research project funded by the Norwegian State and the University of Oslo.

Author information



Corresponding author

Correspondence to Rodorico Giorgi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andriulo, F., Braovac, S., Kutzke, H. et al. Nanotechnologies for the restoration of alum-treated archaeological wood. Appl. Phys. A 122, 322 (2016).

Download citation


  • Lignin
  • Wood Sample
  • Calcium Hydroxide
  • Alum Treatment
  • Archaeological Sample