Skip to main content
Log in

Probing semiconductor confined excitons decay into surface plasmon polaritons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study of the interaction of surface plasmon polaritons (SPPs) with quantum emitters has become very important in the last few years. The ability to design optical devices as well as investigate the physics of strongly interacting systems is some of its useful applications. In this paper, we will show some results on the decay of excitons confined in a InAs/GaAs quantum dot into SPP modes confined in a metallic thin film made of Au, an important step toward the investigation of the basic features of the SPP–exciton interaction. The lifetime of the ground state level was investigated and shown to decrease with the presence of the metallic film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.A. Atwater, The promise of plasmonics. Sci. Am. 296(4), 56–63 (2007)

    Article  Google Scholar 

  2. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  3. C.-Y. Jin, O. Wada, Photonic switching devices based on semiconductor nano-structures. J. Phys. D. Appl. Phys. 47(13), 133001 (2014)

    Article  ADS  Google Scholar 

  4. D.E. Chang, A.S. Sørensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3(11), 807–812 (2007)

    Article  Google Scholar 

  5. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, Ari A.G. Requicha, Harry A. Atwater, Plasmonics-A route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)

    Article  Google Scholar 

  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings Springer Tracts in Modern Physics, vol. 3 (Springer, Berlin, Heidelberg, 1988)

    Google Scholar 

  7. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)

    Article  ADS  Google Scholar 

  8. Z.M. Wang, A. Waag, G. Salamo, N. Kishimoto, Nanoscale Photonics and Optoelectronics, Lecture Notes in Nanoscale Science and Technology (Springer, New York, 2010)

    Book  Google Scholar 

  9. B.S. Passmore, D.C. Adams, T. Ribaudo, D. Wasserman, Stephen Lyon, Paul Davids, Weng W. Chow, Eric A. Shaner, Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots. Nano Lett. 11(2), 338–342 (2011)

    Article  ADS  Google Scholar 

  10. A. González-Tudela, P. Huidobro, L. Martín-Moreno, C. Tejedor, F. García-Vidal, Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110(12), 126801 (2013)

    Article  ADS  Google Scholar 

  11. I. Carusotto, C. Ciuti, Quantum fluids of light. Rev. Mod. Phys. 85(1), 299–366 (2013)

    Article  ADS  Google Scholar 

  12. J. Yuan, C.Y. Jin, M. Skacel, A. Urbanczyk, T. Xia, P.J. van Veldhoven, R. Notzel, Coupling of InAs/InP quantum dots to the plasmon resonance of In nanoparticles grown by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 102(19), 191111 (2013)

    Article  ADS  Google Scholar 

  13. A. Khatab, O.M. Lemine, A. Alkaoud, A. Falamas, M. Aziz, Y.G. Gobato, M. Henini, Photoluminescence intensity enhancement in self-assembled InAs quantum dots grown on (311)B and (100) GaAs substrates and coated with gold nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 54, 233–236 (2013)

    Article  ADS  Google Scholar 

  14. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, Sergey Gaponenko, Igor Nabiev, Ulrike Woggon, Mikhail Artemyev, Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2(12), 1449–1452 (2002)

    Article  ADS  Google Scholar 

  15. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  16. Z.Y. AbuWaar, E. Marega Jr., M. Mortazavi, G.J. Salamo, In situ photoluminescence study of uncapped InAs/GaAs quantum dots. Nanotechnology 19(33), 335712 (2008)

    Article  Google Scholar 

  17. Y.D. Jang, H. Lee, D. Lee, J.S. Kim, J.Y. Leem, S.K. Noh, The energy level spacing from InAsGaAs quantum dots: its relation to the emission wavelength, carrier lifetime, and zero dimensionality. J. Appl. Phys. 99(9), 096101 (2006)

    Article  ADS  Google Scholar 

  18. M.L. Andersen, S. Stobbe, A.S. Sørensen, P. Lodahl, Strongly modified plasmon-matter interaction with mesoscopic quantum emitters. Nat. Phys. 7(3), 215–218 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. R. G. Pereira for fruitful discussions. We also thank the computational support of the Núcleo de Apoio à Óptica e Fotônica (NAPOF-USP), as well as technical support of NanoPlasmonics group. We are also grateful to the Brazilian agencies CNPq under Grant number 140152/2011-3, FAFQ, FAPESP under Grant 2013/07276-1 and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. W. A. Sobreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobreira, F.W.A., de Oliveira, E.R.C., Teodoro, M.D. et al. Probing semiconductor confined excitons decay into surface plasmon polaritons. Appl. Phys. A 122, 385 (2016). https://doi.org/10.1007/s00339-016-9831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9831-2

Keywords

Navigation