Metal hydrides for concentrating solar thermal power energy storage

Abstract

The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    G.G. Libowitz, in Proceedings of the 9th Intersociety Energy Conversion Engineering Conference (New York, 1974), pp. 322–325

  2. 2.

    B. Bogdanović, A. Ritter, B. Spliethoff, Angew. Chem. Int. Ed. Engl. 29, 223 (1990)

    Article  Google Scholar 

  3. 3.

    B. Bogdanović, T.H. Hartwig, B. Spliethoff, Int. J. Hydrog. Energy 18, 575 (1993)

    Article  Google Scholar 

  4. 4.

    M. Groll, A. Isselhorst, M. Wierse, Int. J. Hydrog. Energy 19, 507 (1994)

    Article  Google Scholar 

  5. 5.

    B. Bogdanović, A. Ritter, B. Spliethoff, K. Straburger, Int. J. Hydrog. Energy 20, 811 (1995)

    Article  Google Scholar 

  6. 6.

    B. Bogdanović, H. Hofmann, A. Neuy, A. Reiser, K. Schlichte, B. Spliethoff, S. Wessel, J. Alloys Compd. 292, 57 (1999)

    Article  Google Scholar 

  7. 7.

    D.N. Harries, M. Paskevicius, D.A. Sheppard, T. Price, C.E. Buckley, Proc. IEEE 100, 539 (2012)

    Article  Google Scholar 

  8. 8.

    M. Fellet, C.E. Buckley, M. Paskevicius, D.A. Sheppard, MRS Bull. 38, 1012 (2013)

    Article  Google Scholar 

  9. 9.

    Q. Lai, M. Paskevicius, D.A. Sheppard, C.E. Buckley, A.W. Thornton, M.R. Hill, Q. Gu, J. Mao, Z. Huang, H.K. Liu, Z. Guo, A. Banerjee, S. Chakraborty, R. Ahuja, K.-F. Aguey-Zinsou, ChemSusChem 8, 2789 (2015)

    Article  Google Scholar 

  10. 10.

    US Department of Energy, D.O.E. ARPA-E High Energy Advanced Thermal Storage—DE-FOA-0000471. (2011). https://arpa-e-foa.energy.gov/FileContent.aspx?FileID=79a5de09-8bfd-4590-9cb4-e42578248d90. Accessed 27 Aug 2015

  11. 11.

    SunShot Vision Study, Chapter 5: Concentrating Solar Power: Technologies, Cost, and Performance (US Department of Energy, 2012)

  12. 12.

    D.A. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicius, C.E. Buckley, RSC Adv. 4, 26552 (2014)

    Article  Google Scholar 

  13. 13.

    C. Corgnale, B. Hardy, T. Motyka, R. Zidan, J. Teprovich, B. Peters, Renew. Sustain. Energy Rev. 38, 821 (2014)

    Article  Google Scholar 

  14. 14.

    M. Paskevicius, D.A. Sheppard, K. Williamson, C.E. Buckley, Energy 88, 469 (2015)

    Article  Google Scholar 

  15. 15.

    P.A. Ward, C. Corgnale, J. Teprovich, T. Motyka, B. Hardy, B. Peters, R. Zidan, J. Alloys Compd. 645, S374 (2015)

    Article  Google Scholar 

  16. 16.

    M. Felderhoff, R. Urbanczyk, S. Peil, Green 3, 113 (2013)

    Article  Google Scholar 

  17. 17.

    P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rougé, M. Cabassud, P. Cognet, Renew. Sustain. Energy Rev. 32, 591 (2014)

    Article  Google Scholar 

  18. 18.

    S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Prog. Energy Combust. Sci. 39, 285 (2013)

    Article  Google Scholar 

  19. 19.

    Y. Tian, C.Y. Zhao, Appl. Energy 104, 538 (2013)

    Article  Google Scholar 

  20. 20.

    M. Felderhoff, B. Bogdanović, Int. J. Mol. Sci. 10, 325 (2009)

    Article  Google Scholar 

  21. 21.

    G. Barkhordarian, T. Klassen, R. Bormann, J. Alloys Compd. 364, 242 (2004)

    Article  Google Scholar 

  22. 22.

    T. Gamo, Y. Moriwaki, N. Yanagihara, T. Iwaki, J. Less-Common Met. 89, 495 (1983)

    Article  Google Scholar 

  23. 23.

    P. Dantzer, Metal-hydride technology: a critical review, in Topics in Applied Physics (Springer, Berlin, 1997), pp. 279–340

  24. 24.

    B. Bogdanović, A. Reiser, K. Schlichte, B. Spliethoff, B. Tesche, J. Alloys Compd. 345, 77 (2002)

    Article  Google Scholar 

  25. 25.

    N. Boerema, G. Morrison, R. Taylor, G. Rosengarten, Sol. Energy 86, 2293 (2012)

    ADS  Article  Google Scholar 

  26. 26.

    M.V. Lototskyy, V.A. Yartys, B.G. Pollet, R. C. Bowman Jr., Int. J. Hydrog. Energy 39, 5818 (2014)

    Article  Google Scholar 

  27. 27.

    G.G. Libowitz, The Solid-State Chemistry of Binary Metal Hydrides (W. A. Benjamin Inc., New York, 1965), p. 139

    Google Scholar 

  28. 28.

    C.B. Magee, Saline hydrides, in Metal Hydrides, ed. by W.M. Mueller, J.P. Blackledge, G.G. Libowitz (Academic Press Inc., New York, 1968), p. 791

    Google Scholar 

  29. 29.

    F.D. Manchester, A. San-Martin, Phase Diagrams of Binary Hydrogen Alloys (ASM International, Ohio, 2000)

    Google Scholar 

  30. 30.

    J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, J. Phys. Chem. B 108, 13977 (2004)

    Article  Google Scholar 

  31. 31.

    M.A. Abbas, D.M. Grant, M. Brunelli, T.C. Hansen, G.S. Walker, Phys. Chem. Chem. Phys. 15, 12139 (2013)

    Article  Google Scholar 

  32. 32.

    A. Jain, H. Miyaoka, T. Ichikawa, Y. Kojima, J. Alloys Compd. 580, S211 (2013)

    Article  Google Scholar 

  33. 33.

    E. Veleckis, J. Less-Common Met. 73, 49 (1980)

    Article  Google Scholar 

  34. 34.

    S. Landa, B. Lebl, J. Mostecky, V. Prochazka, J. Stuchlik, J. Vit (US3535078 A, 1970)

  35. 35.

    W. Fedor, M.D. Banus, D. Ingalls, Ind. Eng. Chem. 49, 1664 (1957)

    Article  Google Scholar 

  36. 36.

    W.C. Johnson, M.F. Stubbs, A.E. Sidwell, A. Pechukas, J. Am. Chem. Soc. 61, 318 (1939)

    Article  Google Scholar 

  37. 37.

    R.W. Curtis, P. Chiotti, J. Phys. Chem. 67, 1061 (1963)

    Article  Google Scholar 

  38. 38.

    W. Bliesner (WO 2010/147674 A2, 2010)

  39. 39.

    M. Paskevicius, D.A. Sheppard, C.E. Buckley, J. Am. Chem. Soc. 132, 5077 (2010)

    Article  Google Scholar 

  40. 40.

    N. Gérard, S. Ono, Hydride formation and decomposition kinetics, in Hydrogen in Intermetallic Compounds II, ed. by L. Schlapbach (Springer, New York, 1992)

    Google Scholar 

  41. 41.

    K.F. Aguey-Zinsou, T. Nicolaisen, J.R.A. Ares Fernandez, T. Klassen, R. Bormann, J. Alloys Compd. 434–435, 738 (2007)

    Article  Google Scholar 

  42. 42.

    M.P. Pitt, M. Paskevicius, C.J. Webb, D.A. Sheppard, C.E. Buckley, E.M. Gray, Int. J. Hydrog. Energy 37, 4227 (2012)

    Article  Google Scholar 

  43. 43.

    P.A. Huhn, M. Dornheim, T. Klassen, R. Bormann, J. Alloys Compd. 404, 499 (2005)

    Article  Google Scholar 

  44. 44.

    H.-Y. Tien, M. Tanniru, C.-Y. Wu, F. Ebrahimi, Int. J. Hydrog. Energy 34, 6343 (2009)

    Article  Google Scholar 

  45. 45.

    G. Friedlmeier, M. Groll, J. Alloys Compd. 253, 550 (1997)

    Article  Google Scholar 

  46. 46.

    I. Konstanchuk, K. Gerasimov, J.L. Bobet, J. Alloys Compd. 509, S576 (2011)

    Article  Google Scholar 

  47. 47.

    A. Reiser, B. Bogdanovic, K. Schlichte, Int. J. Hydrog. Energy 25, 425 (2000)

    Article  Google Scholar 

  48. 48.

    W.M. Mueller, J.P. Blackledge, G.G. Libowitz, Metal Hydrides (Academic Press, Inc., New York, 1968), p. 791

  49. 49.

    G.G. Libowitz, H.F. Hayes, T.R.P. Gibb, J. Phys. Chem. 62, 76 (1958)

    Article  Google Scholar 

  50. 50.

    E. Rönnebro, G. Whyatt, M. Powell, M. Westman, F. Zheng, Z. Fang, Energies 8, 8406 (2015)

    Article  Google Scholar 

  51. 51.

    F.D. Manchester, in Monograph Series on Alloy Phase Diagrams, ed. by T.B. Massalski (ASM International, Materials Park, 2000), p. 322

    Google Scholar 

  52. 52.

    S.C. Abrahams, A.P. Ginsberg, K. Knox, Inorg. Chem. 3, 558 (1964)

    Article  Google Scholar 

  53. 53.

    W. Bronger, Angew. Chem. Int. Ed. Engl. 30, 759 (1991)

    Article  Google Scholar 

  54. 54.

    K. Yvon, G. Renaudin, Hydrides: solid state transition metal complexes, in Encyclopedia of Inorganic Chemistry (Wiley, New York, 2006)

  55. 55.

    K. Yvon, Chimia 52, 613 (1998)

    Google Scholar 

  56. 56.

    M. Matsuo, H. Saitoh, A. Machida, R. Sato, S. Takagi, K. Miwa, T. Watanuki, Y. Katayama, K. Aoki, S.-I. Orimo, RSC Adv. 3, 1013 (2013)

    Article  Google Scholar 

  57. 57.

    K. Kadir, D. Noréus, Inorg. Chem. 46, 3288 (2007)

    Article  Google Scholar 

  58. 58.

    M. Orlova, J.-P. Rapin, K. Yvon, Inorg. Chem. 48, 5052 (2009)

    Article  Google Scholar 

  59. 59.

    T.D. Humphries, M. Matsuo, G. Li, S.-I. Orimo, Phys. Chem. Chem. Phys. 17, 8276 (2015)

    Article  Google Scholar 

  60. 60.

    T.D. Humphries, S. Takagi, G. Li, M. Matsuo, T. Sato, M.H. Sørby, S. Deledda, B.C. Hauback, S. Orimo, J. Alloys Compd. 645, S347 (2015)

    Article  Google Scholar 

  61. 61.

    S. Takagi, T.D. Humphries, K. Miwa, S. Orimo, Appl. Phys. Lett. 104, 203901 (2014)

    ADS  Article  Google Scholar 

  62. 62.

    T.D. Humphries, D.A. Sheppard, C.E. Buckley, Chem. Commun. 51, 11248 (2015)

    Article  Google Scholar 

  63. 63.

    S. Takagi, Y. Iijima, T. Sato, H. Saitoh, K. Ikeda, T. Otomo, K. Miwa, T. Ikeshoji, K. Aoki, S.-I. Orimo, Angew. Chem. Int. Ed. 54, 5650 (2015)

    Article  Google Scholar 

  64. 64.

    J.J. Reilly, R.H. Wiswall, Inorg. Chem. 7, 2254 (1968)

    Article  Google Scholar 

  65. 65.

    B. Huang, K. Yvon, P. Fischer, J. Alloys Compd. 178, 173 (1992)

    Article  Google Scholar 

  66. 66.

    B. Huang, K. Yvon, P. Fischer, J. Alloys Compd. 190, 65 (1992)

    Article  Google Scholar 

  67. 67.

    B. Huang, K. Yvon, P. Fischer, J. Alloys Compd. 227, 121 (1995)

    Article  Google Scholar 

  68. 68.

    L.A. Baum, M. Meyer, L. Mendoza-Zelis, Int. J. Hydrog. Energy 33, 3442 (2008)

    Article  Google Scholar 

  69. 69.

    S. Deledda, B.C. Hauback, Nanotechnology 20, 204010 (2009)

    ADS  Article  Google Scholar 

  70. 70.

    K. Yvon, B. Bertheville, J. Alloys Compd. 425, 101 (2006)

    Article  Google Scholar 

  71. 71.

    Y. Kim, D. Reed, Y.-S. Lee, J.Y. Lee, J.-H. Shim, D. Book, Y.W. Cho, J. Phys. Chem. C 113, 5865 (2009)

    Article  Google Scholar 

  72. 72.

    D.A. Sheppard, M. Paskevicius, C.E. Buckley, Chem. Mater. 23, 4298 (2011)

    Article  Google Scholar 

  73. 73.

    H. Reardon, N. Mazur, D.H. Gregory, Prog. Nat. Sci. 23, 343 (2013)

    Article  Google Scholar 

  74. 74.

    US Department of Energy, Hydrogen Storage Materials Database. http://www.hydrogenmaterialssearch.govtools.us/. Accessed 27 Aug 2015

  75. 75.

    T. Gamo, Y. Moriwaki, N. Yanagihara, T. Yamashita, T. Iwaki, Int. J. Hydrog. Energy 10, 39 (1985)

    Article  Google Scholar 

  76. 76.

    J.A. Murshidi, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Int. J. Hydrog. Energy 36, 7587 (2011)

    Article  Google Scholar 

  77. 77.

    S. Chumphongphan, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Int. J. Hydrog. Energy 37, 7586 (2012)

    Article  Google Scholar 

  78. 78.

    S. Chumphongphan, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Int. J. Hydrog. Energy 38, 2325 (2013)

    Article  Google Scholar 

  79. 79.

    G. Sandrock, J. Alloys Compd. 293–295, 877 (1999)

    Article  Google Scholar 

  80. 80.

    R. Urbanczyk, K. Peinecke, M. Felderhoff, K. Hauschild, W. Kersten, S. Peil, D. Bathen, J. Alloys Compd. 385, 224 (2014)

    Google Scholar 

  81. 81.

    E.L. Huston, G.D. Sandrock, J. Less-Common Met. 74, 435 (1980)

    Article  Google Scholar 

  82. 82.

    Flexibles Hochtemperatur-System für Dezentrale Stromerzeugung: Stirlingmaschine mit thermochemischem Speicher (‘BSR Solar Technologies’ Max-Planck-Institut für Kohlenforschung, 2005)

  83. 83.

    R. Urbanczyk, S. Peil, D. Bathen, C. Heßke, J. Burfeind, K. Hauschild, M. Felderhoff, F. Schüth, Fuel Cells 11, 911 (2011)

    Article  Google Scholar 

  84. 84.

    W. Luo, K.J. Gross, J. Alloys Compd. 385, 224 (2004)

    Article  Google Scholar 

  85. 85.

    W. Luo, K. Stewart, J. Alloys Compd. 440, 357 (2007)

    Article  Google Scholar 

  86. 86.

    D.E. Demirocak, S.S. Srinivasan, M.K. Ram, J.N. Kuhn, R. Muralidharan, X. Li, D.Y. Goswami, E.K. Stefanakos, Int. J. Hydrog. Energy 38, 10039 (2013)

    Article  Google Scholar 

  87. 87.

    G. Xia, D. Li, X. Chen, Y. Tan, Z. Tang, Z. Guo, H. Liu, Z. Liu, X. Yu, Adv. Mater. (Weinheim, Ger.) 25, 6238 (2013)

    Article  Google Scholar 

  88. 88.

    P. Adelhelm, P.E. de Jongh, J. Mater. Chem. 21, 2417 (2011)

    Article  Google Scholar 

  89. 89.

    W. Zhang, F. Ren, Z. Feng, J.-A. Wang, Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen (Oak Ridge National Laboratory, 2012), ORNL/TM-2013/113

  90. 90.

    W.A. Amos, Costs of Storing and Transporting Hydrogen (Golden, 1998), NREL/TP-570-25106

  91. 91.

    R. Kottenstette, J. Cotrell, Hydrogen Storage in Wind Turbine Towers (Golden, 2003), NREL/TP-500-34656

  92. 92.

    W.C. Leighty, J. Holloway, R. Merer, B. Somerday, C.S. Marchi, G. Keith, D.E. White, Compressorless Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost (Juneau, 2006)

  93. 93.

    T.-P. Chen, Hydrogen Delivery Infrastructure Options Analysis (2010), DE-FG36-05GO15032

  94. 94.

    Safety Standard for Hydrogen and Hydrogen Systems (NASA, 1997), Report NSS 1740.16

  95. 95.

    IEC, Electrical Apparatus for Explosive Gas Atmospheres—Part 20: Data for Flammable Gases and Vapours, Relating to the Use of Electrical Apparatus (Massachusetts, 1986), p. 59

  96. 96.

    M. Medrano, A. Gil, I. Martorell, X. Potau, L.F. Cabeza, Renew. Sustain. Energy Rev. 14, 56 (2010)

    Article  Google Scholar 

  97. 97.

    The Battleship Bismarck. http://www.kbismarck.com/propulsioni.html. Accessed 27 Aug 2015

  98. 98.

    A.L. Avila-Marin, M. Alvarez-Lara, J. Fernandez-Reche, Proceedings of the Solarpaces 2013 International Conference, vol. 49 (2014), p. 705

  99. 99.

    E.W. Lemmon, M.O. McLinden, D.G. Friend, “Thermophysical Properties of Fluid Systems” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. (National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov). Accessed 27 Aug 2015

  100. 100.

    J.K. Fink, L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor (Argonne Natioal Laboratory, 1995), ANL/RE-95/2

  101. 101.

    Density of Molten Salts and Representative Salts. http://moltensalt.org/references/static/downloads/pdf/element-salt-densities.pdf. Accessed 27 Aug 2015

  102. 102.

    Y. Iwadate, I. Okada, K. Kawamura, J. Chem. Eng. Data 27, 288 (1982)

    Article  Google Scholar 

  103. 103.

    P.G. Jessop, W. Leitner, Supercritical fluids as media for chemical reactions, in Chemical Synthesis Using Supercritical Fluids (Wiley-VCH Verlag GmbH, 2007), pp. 1–36

  104. 104.

    D.A. Sheppard, T.D. Humphries, C.E. Buckley, Appl. Phys. A submitted, APYA-D-1501572 (2015). doi:10.1007/s00339-016-9830-3

  105. 105.

    P.A. Ward, C. Corgnale, J.A. Teprovich, T. Motyka, B. Hardy, D.A. Sheppard, C.E. Buckley, R. Zidan, Appl. Phys. A Submitted (2015)

  106. 106.

    G. Kolb, C.K. Ho, T. Manchini, J. Gary, Power Tower Technology Roadmap and Cost Reduction Plan, Sandia National Laboratories, Report SAND2011-2419 (2011)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. A. Sheppard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheppard, D.A., Paskevicius, M., Humphries, T.D. et al. Metal hydrides for concentrating solar thermal power energy storage. Appl. Phys. A 122, 395 (2016). https://doi.org/10.1007/s00339-016-9825-0

Download citation

Keywords

  • Hydride
  • Heat Storage
  • Metal Hydride
  • MgH2
  • Thermal Energy Storage