Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite

Abstract

Bismuth-doped cobalt ferrite CoBi x Fe(2−x)O4 with x = 0, 0.1,0.2, 0.3, 0.4, 0.5 have been prepared using powder metallurgy route. The structural, morphological, elemental, magnetic and optical properties have been investigated using X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-rays, vibrating sample magnetometer and ultraviolet–visible spectrometer, respectively. X-ray diffractometer analysis confirms the formation of single-phase cubic spinel structure. As the substitution of larger ionic radii Bi3+ ions increases in cobalt ferrite which is responsible to increase the lattice parameters and decrease the crystallite size. SEM micrographs revealed the spherical shape of the particles with the nonuniform grain boundaries. The saturation magnetization decreases and bandgap energy increases as the concentration of non-magnetic Bi3+ ions increases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, J. Appl. Phys. 115, 243904 (2014)

    Article  ADS  Google Scholar 

  2. 2.

    L. Ben Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.-J. Vaulay, V. Richard, J.M. Grenéche, F. Villain, F. Fiévet, J. Magn. Magn. Mater. 320, 3242 (2008)

    Article  ADS  Google Scholar 

  3. 3.

    S. Anjum, G. Hassnain Jaffari, A.K. Rumaiz, M. Shahid Rafique, S. Ismat Shah, Role of vacancies in transport and magnetic properties of nickel ferrite thin films. J. Phys. D Appl. Phys. 43, 265001 (2010)

    Article  ADS  Google Scholar 

  4. 4.

    A. Paul, B. Selvadurai, V. Pazhanivelu, R. Murugaraj, Appl. Phys. A 119, 229 (2015)

    Google Scholar 

  5. 5.

    C. Hou, H. Yu, Q. Zhang, Y. Li, H. Wang, Prearation and magnetic property analysis of Monodisperse Co–Zn ferrite nanospheres. J. Alloys Compd. 491, 431–435 (2010)

    Article  Google Scholar 

  6. 6.

    R.C. Kambale, P.A. Shaikh, N.S. Harale, V.A. Ilur, Y.D. Kolekar, C.H. Hosale, K.Y. Rajpure, Coductivity study of polyailine coalt ferrite (PANI-CoFe2O4) nanocomposite. J. Alloys Compd. 490, 568–571 (2010)

    Article  Google Scholar 

  7. 7.

    L. Ai, J. Jiang, Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Curr. Appl. Phys. 10, 284–288 (2010)

    Article  ADS  Google Scholar 

  8. 8.

    S. Jauhar, A. Goyal, N. Lakshmi, K. Chandra, S. Singhal, Mater. Chem. Phys. 139, 836 (2013)

    Article  Google Scholar 

  9. 9.

    S.M. Patange, S.E. Shirsath, G.S. Jangam, K.S. Lohar, S.S. Jadhav, J. Appl. Phys. 109, 053909 (2011)

    Article  ADS  Google Scholar 

  10. 10.

    J. Chand, G. Kumar, P. Kumar, S.K. Sharma, M. Knobel, M. Singh, J. Alloys Compd. 509, 9638 (2011)

    Article  Google Scholar 

  11. 11.

    X. Wu, H. Yu, H. Dong, L. Geng, Ceram. Int. 40, 5905 (2014)

    Article  Google Scholar 

  12. 12.

    Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue, F. Li, J. Ding, J. Mater. Chem. C 1, 2875 (2013)

    Article  Google Scholar 

  13. 13.

    M. Rahimi, M. Eshraghi, P. Kameli, Ceram. Int. 40, 15569 (2014)

    Article  Google Scholar 

  14. 14.

    S. Verma, J. Chand, K.M. Batoo, M. Singh, J. Alloys Compd. 565, 148 (2013)

    Article  Google Scholar 

  15. 15.

    S.K. Gore, R.S. Mane, M. Naushad, S.S. Jadhav, M.K. Zate, Z.A. Alothman, B.K.N. Hui, Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384 (2015)

    Article  Google Scholar 

  16. 16.

    A. Franco Jr, F.L.A. Machado, V.S. Zapf, F. Wolff-Fabris, Enhanced magnetic properties of Bi-substituted cobalt ferrites. J. Appl. Phys. 109, 07A745 (2011)

    Google Scholar 

  17. 17.

    H.M. Khan*, M. Islam, I. Ali, M. Rana, Electrical transport properties of Bi2O3-doped CoFe2O4 and CoHo0.02Fe1.98O4 ferrites. Mater. Sci. Appl. 2, 1083–1089 (2011)

    Google Scholar 

  18. 18.

    C. Fei, Y. Zhang, Z. Yang, Y. Liu, R. Xiong, J. Shi, X. Ruan, J. Magn. Magn. Mater. 323, 1811 (2011)

    Article  ADS  Google Scholar 

  19. 19.

    G. Chandrasekaran, S. Selvandan, K. Manivannane, J. Mater. Sci. Mater. Electron. 15, 15 (2004)

    Article  Google Scholar 

  20. 20.

    S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. IEEE Trans. Magn. 50, 8 (2014)

    Article  Google Scholar 

  21. 21.

    H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. (Wiley, New York, 1974)

    Google Scholar 

  22. 22.

    K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al-doped CdO thin films. J. Alloy. Compd. 509, 6756 (2011)

    Article  Google Scholar 

  23. 23.

    A.A. Yousif, M.E. Elzain, S.A. Mazen, H.H. Sutherland, M.H. Abdalla, S.F. Mansour, J. Phys. Condens. Matter 6, 5717 (1994)

    Article  ADS  Google Scholar 

  24. 24.

    S.M. Attia, Egypt. J. Solids 29, 2 (2006)

    Google Scholar 

  25. 25.

    J. Smit, H.P.J. Wijn, Ferrites (Cleaver-Hume Press, London, 1959)

    Google Scholar 

  26. 26.

    R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    Article  ADS  Google Scholar 

  27. 27.

    Y.M. Abbas, S.A. Mansour, M.H. Ibrahima, S.E. Ali, Structural and magnetic properties of nano crystalline stannic substituted cobalt ferrite. J. Magn. Magn. Mater. 324, 2781–2787 (2012)

    Article  ADS  Google Scholar 

  28. 28.

    M.A. Ahmed, S.F. Mansour, S.I. El-Dek, Solid State Ion. 181, 1149 (2010)

    Article  Google Scholar 

  29. 29.

    N. Singh, A. Agarwal, S. Sanghi, P. Singh, Synthesis, microstructure, dielectric and magnetic properties of Cu substituted Ni–Li ferrites. J. Magn. Magn. Mater. 323, 486 (2011)

    Article  ADS  Google Scholar 

  30. 30.

    N.M. Burange, S.S. Chogule, D.R. Patil, R.S. Devan, Y.D. Koleka, B.K. Chougle, Studies on structural, electrical and magnetic properties of y (Ni0.5Zn0.3Co0.2Fe2−O4) + (1−y)(BaTiO3) composites. J. Alloy. Compd. 479, 569–573 (2009)

    Article  Google Scholar 

  31. 31.

    D. Yang, L.K. Lavoie, Y. Zhang, Z. Zhang, S. Ge, J. Appl. Phys. 93, 7492 (2003)

    Article  ADS  Google Scholar 

  32. 32.

    Y. Yafet, C. Kittel, Phys. Rev. 87, 290 (1952)

    Article  ADS  Google Scholar 

  33. 33.

    Y. Li, Q. Li, M. Wen, Y. Zang, Y. ZhiXie, F. Xu, S. Wie, J. Electron Spectrosc. Relat. Phenom. 160, 1 (2007)

    Article  Google Scholar 

  34. 34.

    L. Neel, C. R. Acad. Paris 230, 375 (1950)

    Google Scholar 

  35. 35.

    S.J. Haraikar, R.H. Kadam, Phys. B 407, 4338 (2012)

    Article  ADS  Google Scholar 

  36. 36.

    M. Hashim Alimuddin, S. Kumar, S.E. Shirsath, R.K. Kotnala, H. Chung, R. Kumar, Powder Technol. 229, 37 (2012)

    Article  Google Scholar 

  37. 37.

    D.R. Mane, D.D. Birajdar, S.E. Shirsath, R.A. Telugu, R.H. Kadam, Status Solidi A 207, 2355 (2010)

    Article  ADS  Google Scholar 

  38. 38.

    L. Mustafa, S. Anjum, S. Waseem, R. Zia, R. Chaudhary, S. Ramay, A. Mahmood, S. Atiq, S.U.-D. Khan, Investigation of structural, magnetic and optical properties of ZnO codoped with Co and Cd. Adv. Condens. Matter Phys. 2014, 362864 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Safia Anjum.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anjum, S., Sehar, F., Awan, M.S. et al. Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite. Appl. Phys. A 122, 436 (2016). https://doi.org/10.1007/s00339-016-9798-z

Download citation

Keywords

  • Ferrite
  • Crystallite Size
  • Saturation Magnetization
  • Bi2O3
  • Octahedral Site