Applied Physics A

, 122:227 | Cite as

Effect of ion beam parameters on engineering of nanoscale voids and their stability under post-growth annealing

  • Sonu Hooda
  • S. A. Khan
  • B. Satpati
  • D. Stange
  • D. Buca
  • M. Bala
  • C. Pannu
  • D. Kanjilal
  • Debdulal Kabiraj


Swift heavy ion (SHI) irradiation of damaged germanium (d-Ge) layer results in porous structure with voids aligned along ion trajectory due to local melting and resolidification during high electronic energy deposition. The present study focuses on the irradiation temperature- and incident angle-dependent growth dynamics and shape evolution of these voids due to 100 MeV Ag ions irradiation. The d-Ge layers were prepared by multiple low-energy Ar ion implantations in single crystalline Ge with damage formation of ~7 displacements per atom. Further, these d-Ge layers were irradiated using 100 MeV Ag ions at two different temperatures (77 and 300 K) and three different angles (7°, 30° and 45°). After SHI irradiation, substantial volume expansion of d-Ge layer is detected which is due to formation of nanoscale voids. The volume expansion is observed to be more in the samples irradiated at 77 K as compared to 300 K at a given irradiation fluence. It is observed that the voids are of spherical shape at low ion irradiation fluence. The voids grow in size and change their shape from spherical to prolate spheroid with increasing ion fluence. The major axis of spheroid is observed to be aligned approximately along the ion beam direction which has been confirmed by irradiation at three different angles. The change in shape is a consequence of combination of compressive strain and plastic flow developed due to thermal spike generated along ion track. Post-SHI irradiation annealing shows increase in size of voids and reversal of shape from prolate spheroid towards spherical through strain relaxation. The stability of voids was studied with the effect of post-growth annealing.


  1. 1.
    N.G. Rudawski et al., Appl. Phys. Lett. 100(8), 083111 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    D. Sun, A.E. Riley, A.J. Cadby, E.K. Richman, S.D. Korlann, S.H. Tolbert, Nature 441, 1126 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    H. Föll, J. Carstensen, S. Frey, J. Nanomater. 2006(10), 91635 (2006)Google Scholar
  4. 4.
    G. Kaltsas, A.G. Nassiopoulou, Sens. Actuators A Phys. 76, 133 (1999)CrossRefGoogle Scholar
  5. 5.
    R. Böttger, K.-H. Heinig, L. Bischoff, B. Liedke, S. Facsko, Appl. Phys. A 113, 53 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    T. Steinbach, J. Wernecke, P. Kluth, M.C. Ridgway, W. Wesch, Phys. Rev. B 84, 104108 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M.C. Ridgway et al., Phys. Rev. Lett. 110, 245502 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    G. Impellizzeri, L. Romano, B. Fraboni, E. Scavetta, F. Ruffino, C. Bongiorno, V. Privitera, M.G. Grimaldi, Nanotechnology 23, 395604 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Yanagisawa, K. Takarabe, K. Ogushi, K. Gamo, Y. Akasaka, J. Phys.: Condens. Matter 19, 445002 (2007)ADSGoogle Scholar
  10. 10.
    B.R. Yates, B.L. Darby, R.G. Elliman, K.S. Jones, Appl. Phys. Lett. 101, 131907 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    B. Stritzker, R.G. Elliman, J. Zou, Nucl. Instrum. Methods Phys. Res. B 175–177, 193 (2001)CrossRefGoogle Scholar
  12. 12.
    L.M. Wang, R.C. Birtcher, Philos. Mag. A 64, 1209 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    T. Steinbach, C.S. Schnohr, P. Kluth, R. Giulian, L.L. Araujo, D.J. Sprouster, M.C. Ridgway, W. Wesch, Phys. Rev. B 83, 054113 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P. Kluth et al., Appl. Phys. Lett. 104(2), 023105 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    K. Gärtner, J. Jöhrens, T. Steinbach, C.S. Schnohr, M.C. Ridgway, W. Wesch, Phys. Rev. B 83, 224106 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    T. Steinbach, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 319, 112 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S. Hooda, B. Satpati, S. Ojha, T. Kumar, D. Kanjilal, D. Kabiraj, Mater. Res. Express 2, 045903 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Biophoton. Int. 11, 36 (2004)Google Scholar
  20. 20.
    S.M. Kluth, J.D. Fitz Gerald, M.C. Ridgway, Appl. Phys. Lett. 86(13), 131920 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    M. Toulemonde, C. Dufour, E. Paumier, Phys. Rev. B 46, 14362 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    A. Kamarou, W. Wesch, E. Wendler, A. Undisz, M. Rettenmayr, Phys. Rev. B 78, 054111 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    S. Hooda, S.A. Khan, B. Satpati, A. Uedono, S. Sellaiyan, K. Asokan, D. Kanjilal, D. Kabiraj, Microporous Mesoporous Mater. 225, 323–330 (2016)CrossRefGoogle Scholar
  24. 24.
    24. C.A. Volkert, J. Appl. Phys. 70, 3521 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sonu Hooda
    • 1
  • S. A. Khan
    • 1
  • B. Satpati
    • 2
  • D. Stange
    • 3
  • D. Buca
    • 3
  • M. Bala
    • 1
  • C. Pannu
    • 1
  • D. Kanjilal
    • 1
  • Debdulal Kabiraj
    • 1
  1. 1.Inter-University Accelerator CentreNew DelhiIndia
  2. 2.Saha Institute of Nuclear PhysicsKolkataIndia
  3. 3.Peter Grünberg Institute 9 (PGI 9) and JARA-Fundamentals of Future Information TechnologiesForschungszentrum JuelichJuelichGermany

Personalised recommendations