Applied Physics A

, 122:408 | Cite as

Heat conductivity of copper in two-temperature state

  • K. P. MigdalEmail author
  • Yu. V. Petrov
  • D. K. Il‘nitsky
  • V. V. Zhakhovsky
  • N. A. Inogamov
  • K. V. Khishchenko
  • D. V. Knyazev
  • P. R. Levashov
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies


Electron–ion relaxation lasts few tens of picoseconds in a submicrometer surface layer of metal after irradiation by femtosecond laser pulse of moderate intensity. During this stage, the electron temperature is many times higher than ion (lattice) temperature. The rate of this relaxation is slower for noble metals due to their small electron–ion coupling. Thus, effects caused by high electron temperature reveal more obviously for those metals. To study electron transport in noble metal nanofilms, we combine the first-principle calculations and our analytical models. The newly calculated electron–phonon coupling and heat conductivity are used in two-temperature hydrodynamics modeling. Results of such modeling are in good agreement with the experimental data and molecular dynamics simulation.


Heat Conductivity Density Functional Theory Calculation Liquid Copper Mass Attenuation Coefficient Quantum Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research has been performed under financial support from Russian Science Foundation (RSCF) (Project No. 14-19-01599).


  1. 1.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel‘man, Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  2. 2.
    B.I. Cho, K. Engelhorn, A.A. Correa, T. Ogitsu, C.P. Weber, H.J. Lee, J. Feng, P.A. Ni, Y. Ping, A.J. Nelson, D. Prendergast, R.W. Lee, R.W. Falcone, P.A. Heimann, Phys. Rev. Lett. 106, 167601 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Wang, X. Ruan, A.K. Roy, Phys. Rev. B 85, 205311 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. B 66, 025401 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    V. Recoules, J.-P. Crocombette, Phys. Rev. B 72, 104202 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D.V. Knyazev, P.R. Levashov, Phys. Plasmas 21, 073302 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J. Clerouin, P. Renaudin, Y. Laudernet, P. Noiret, M.P. Desjarlais, Phys. Rev. B 71, 064203 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    G. Norman, I. Saitov, V. Stegailov, P. Zhilyaev, Contrib. Plasma Phys. 53, 300 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    S.I. Anisimov, B. Rethfeld, Proc. SPIE 3093, 192 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    D. Ivanov, L. Zhigilei, Phys. Rev. B 68, 066114 (2003)CrossRefGoogle Scholar
  12. 12.
    Yu.V. Petrov, N.A. Inogamov, K.P. Migdal, JETP Lett. 97, 20 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K.P. Migdal, D.K. Il‘nitsky, Yu.V. Petrov, N.A. Inogamov, J. Phys. Conf. Ser. 653, 012086 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    V. Recoules, J. Clerouin, G. Zerah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J. Hohlfield, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Elk is an all-electron full-potential linearised augmented-planewave (fp-lapw) code released under either the gnu general public license (gpl) or the gnu lesser general public license (lgpl). elk code is available on
  19. 19.
    R. Perriot, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, J. Phys. Conf. Ser. 500, 172008 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    N.A. Inogamov, V.V. Zhakhovsky, AYa. Faenov, V.A. Khokhlov, V.V. Shepelev, I.Y. Skobelev, Y. Kato, M. Tanaka, T.A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S.V. Bulanov, T. Kawachi, Yu.V. Petrov, S.I. Anisimov, V.E. Fortov, Appl. Phys. A 101, 87 (2010)ADSCrossRefGoogle Scholar
  21. 21.
  22. 22.
    C.T. Chantler, J. Phys. Chem. Ref. Data 24, 71 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Loboda, N.A. Smirnov, A.A. Shadrin, N.G. Karlykhanov, High Energy Density Phys. 7, 361 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    K.P. Migdal, Yu.V. Petrov, N.A. Inogamov, Proc. SPIE 9065, 906503 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre of Fundamental and Applied ResearchDukhov Research Institute of Automatics (VNIIA)MoscowRussian Federation
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of ScienceMoscowRussian Federation
  3. 3.Moscow Institute of Physics and TechnologyMoscowRussian Federation
  4. 4.Joint Institute of High TemperaturesMoscowRussian Federation
  5. 5.State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental PhysicsNational Research Centre Kurchatov InstituteMoscowRussian Federation
  6. 6.Tomsk State UniversityTomskRussian Federation

Personalised recommendations