Skip to main content
Log in

Magnetic nature of the austenite–martensite phase transition and spin glass behaviour in nanostructured Mn2Ni1.6Sn0.4 melt-spun ribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline ribbons of inverse Heusler alloy Mn2Ni1.6Sn0.4 have been synthesised by melt spinning of the arc-melted bulk precursor. The single-phase ribbons crystallize into a cubic structure and exhibit very fine crystallite size of <2 nm. Temperature-dependent magnetization (MT) measurements reveal ferromagnetic–austenite (FM-A)–antiferromagnetic–martensite (AFM-M) phase transition that begins at M S ≈ 249 K and finishes at M f ≈ 224 K. During warming, the reverse AFM-M to FM-A transitions begins at A s ≈ 240 K and finishes at A f ≈ 261 K. A re-entrant FM transition is observed in the M-phase at \(T_{\text{CM}}\) ≈ 145 K. These transitions are also confirmed by temperature-dependent resistivity (ρT) measurements. The hysteretic behaviour of MT and ρT in the temperature regime spanned by the A-M transition is a manifestation of the first-order phase transition. MT and ρT data also provide unambiguous evidence in favour of spin glass at \(T < T_{\text{CM}}\). The scaling of the glass freezing temperature (T f) with frequency, extracted from the frequency-dependent AC susceptibility measurements, confirms the existence of canonical spin glass at \(T < T_{\text{CM}}\) ≈ 145 K. The occurrence of canonical spin glass has been explained in terms of the nanostructuring modified interactions between the coexisting FM and AFM correlations in the martensitic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Graf, S.S.P. Parkin, C. Felser, IEEE Trans. Magn. 47, 367 (2011)

    Article  Google Scholar 

  2. I. Galanakis, Ph Mavropoulos, P.H. Dederichs, J. Phys. D Appl. Phys. 39, 765 (2006)

    Article  ADS  Google Scholar 

  3. A. Planes, L. Manosa, M. Acet, J. Phys. Condens. Matter 21, 233201 (2009)

    Article  ADS  Google Scholar 

  4. E. Yüzüak, I. Dincer, Y. Elerman, A. Auge, N. Teichert, A. Hütten, Appl. Phys. Lett. 103, 222403 (2013)

    Article  ADS  Google Scholar 

  5. V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan, S.B. Roy, Appl. Phys. Lett. 89, 222509 (2006)

    Article  ADS  Google Scholar 

  6. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 72, 014412 (2005)

    Article  ADS  Google Scholar 

  7. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 73, 174413 (2006)

    Article  ADS  Google Scholar 

  8. A.K. Nayak, K.G. Suresh, A.K. Nigam, J. Phys. Condens. Matter 23, 416004 (2011)

    Article  Google Scholar 

  9. R.Y. Umetsu, A. Fujita, W. Ito, T. Kanomata, R. Kainuma, J. Phys. Condens. Matter 23, 326001 (2011)

    Article  Google Scholar 

  10. B. Hernando, J.L. Sánchez Llamazares, J.D. Santos, L. Escoda, J.J. Suñol, R. Varga, D. Baldomir, D. Serantes, Appl. Phys. Lett. 92, 042504 (2008)

    Article  ADS  Google Scholar 

  11. K.R. Priolkar, D.N. Lobo, P.A. Bhobe, S. Emura, A.K. Nigam, Europhys. Lett. 94, 38006 (2011)

    Article  ADS  Google Scholar 

  12. M. Khan, J. Jung, S.S. Stoyko, A. Mar, A. Quetz, T. Samanta, I. Dubenko, N. Ali, S. Stadler, K.H. Chow, Appl. Phys. Lett. 100, 172403 (2012)

    Article  ADS  Google Scholar 

  13. H.C. Xuan, Q.Q. Cao, C.L. Zhang, S.C. Ma, S.Y. Chen, D.H. Wang, Y.W. Du, Appl. Phys. Lett. 96, 202502 (2010)

    Article  ADS  Google Scholar 

  14. M. Khan, I. Dubenko, S. Stadler, J. Jung, S.S. Stoyko, A. Mar, A. Quetz, T. Samanta, N. Ali, K.H. Chow, Appl. Phys. Lett. 102, 112402 (2013)

    Article  ADS  Google Scholar 

  15. H. Luo, G. Liu, Z. Feng, Y. Li, L. Ma, G. Wu, X. Zhu, C. Jiang, H. Xu, J. Magn. Magn. Mater. 321, 4063 (2009)

    Article  ADS  Google Scholar 

  16. G.D. Liu, X.F. Dai, H.Y. Liu, J.L. Chen, Y.X. Li, G. Xiao, G.H. Wu, Phys. Rev. B 77, 014424 (2008)

    Article  ADS  Google Scholar 

  17. X. Wang, J.-X. Shang, F.-H. Wang, C.-B. Jiang, H.-B. Xu, Scr. Mater. 89, 33 (2014)

    Article  Google Scholar 

  18. K. Ozdogan, I. Galanakis, J. Magn. Magn. Mater. 321, L34 (2009)

    Article  ADS  Google Scholar 

  19. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  20. V.V. Sokolovskiy, V.D. Buchelnikov, M.A. Zagrebin, P. Entel, S. Sahoo, M. Ogura, Phys. Rev. B 86, 134418 (2012)

    Article  ADS  Google Scholar 

  21. Y. Sutou, Y. Imano, N. Koeda, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004)

    Article  ADS  Google Scholar 

  22. A. Ghosh, K. Mandal, Appl. Phys. Lett. 104, 031905 (2014)

    Article  ADS  Google Scholar 

  23. S. Chatterjee, S. Giri, S.K. De, S. Majumdar, Phys. Rev. B 79, 092410 (2009)

    Article  ADS  Google Scholar 

  24. L. Ma, W.H. Wang, J.B. Lu, J.Q. Li, C.M. Zhen, D.L. Hou, G.H. Wu, Appl. Phys. Lett. 99, 182507 (2011)

    Article  ADS  Google Scholar 

  25. J.L. Sánchez Llamazares, T. Sanchez, J.D. Santos, M.J. Pérez, M.L. Sanchez, B. Hernando, Ll. Escoda, J.J. Suño, R. Varga, Appl. Phys. Lett. 92, 012513 (2008)

    Article  ADS  Google Scholar 

  26. G.D. Liu, J.L. Chen, Z.H. Liu, X.F. Dai, G.H. Wu, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 87, 262504 (2005)

    Article  ADS  Google Scholar 

  27. A. Ayuela, J. Enkovaara, K. Ullakko, R.M. Nieminen, J. Phys. Condens. Matter 11, 2017 (1999)

    Article  ADS  Google Scholar 

  28. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  29. J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, Abingdon, 1993)

    Google Scholar 

  30. P. Liao, C. Jing, X.L. Wang, Y.J. Yang, D. Zheng, Z. Li, B.J. Kang, D.M. Deng, S.X. Cao, J.C. Zhang, B. Lu, Appl. Phys. Lett. 104, 092410 (2014)

    Article  ADS  Google Scholar 

  31. H. Vogel, Z. Phys. 22, 645 (1921)

    Google Scholar 

  32. G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Director, CSIR-NPL, for persistent support. Financial support from CSR and DST (INSPIRE fellowship for BB) is gratefully acknowledged. Authors are grateful to Dr. Anurag Gupta and Dr. V. P. S. Awana for magnetic measurements and Radhey Shyam and N. K. Upadhayay for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Borgohain, B., Srivastava, A.K. et al. Magnetic nature of the austenite–martensite phase transition and spin glass behaviour in nanostructured Mn2Ni1.6Sn0.4 melt-spun ribbons. Appl. Phys. A 122, 237 (2016). https://doi.org/10.1007/s00339-016-9739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9739-x

Keywords

Navigation