S.M. Zeitels, J.A. Burns, G. Lopez-Guerra, R.R. Anderson, R.E. Hillman, Ann. Otol. Rhinol. Laryngol. Suppl. 199, 3–24 (2008)
Google Scholar
Y. Yan, A.E. Olszewski, M.R. Hoffman, P. Zhuang, Ch. N. Ford, S.H. Dailey, J.J. Jiang, J. Voice 24(1), 102–109 (2010)
A.V. Shakhov, A.B. Terentjeva, V.A. Kamensky, L.B. Snopova, F.I. Feldstain, A.M. Sergeev, Optical coherence tomography monitoring for laser surgery of laryngeal carcinoma. J. Surg. Oncol. 77, 253–259 (2001). doi:10.1002/jso.1105
Article
Google Scholar
V. Kamensky, F. Feldchtein, V. Gelikonov, L. Snopova, S. Muraviov, A. Malyshev, N. Bityurin, A. Sergeev, In situ monitoring of laser modification process in human cataractous lens and porcine cornea using coherence tomography. J. Biomed. Opt. 4(1), 137–143 (1999). doi:10.1117/1.429927
ADS
Article
Google Scholar
K. Stock, T. Stegmayer, R. Graser, W. Förster, R. Hibst, Comparison of different focusing fiber tips for improved oral diode laser surgery. Lasers Surg. Med. 44(10), 815–823 (2012). doi:10.1002/lsm.22091
Article
Google Scholar
A. Malyshev, N. Bityurin, Appl. Phys. A 79, 4–6 (2004). doi:10.1007/s00339-004-26287
Article
Google Scholar
V.I. Yusupov, V.M. Chudnovskii, V.N. Bagratashvili, Laser-induced hydrodynamics in water-saturated biotissues. 1. Generation of bubbles in liquid. Laser Phys. 20(7), 1641–1647 (2010)
ADS
Article
Google Scholar
G.E. Romanos, Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes. Compend. Contin. Educ. Dent. 34, 752–757 (2013). (quiz 758)
Google Scholar
M. Amzayyb, R.R. van den Bos, V.M. Kodach, D.M. de Bruin, T. Nijsten, H.A.M. Neumann, M.J.C. van Gemert, Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers Med. Sci. 25, 439–447 (2010). doi:10.1007/s10103-009-0749-1
Article
Google Scholar
D.S. Kuznetsova, M.M. Karabut, V.V. Elagin, M.A. Shakhova, V.I. Bredikhin, O.S. Baskina, L.B. Snopova, A.V. Shakhov, V.A. Kamensky, Comparative analysis of biotissue laser resection using strongly absorbing optical fiber tips. Opt. Photonics J. 5, 1–5 (2015). doi:10.4236/opj.2015.51001
ADS
Article
Google Scholar
D. Kuznetsova, V. Elagin, M. Karabut, M. Shakhova, V. Bredikhin, L. Snopova, A. Shakhov, N. Sapogova, N. Bityurin, V. Bagratashvili, V. Kamensky, The influence on biotissue laser resection of a strongly absorbing layer at the optical fiber tip. J. Innov. Opt. Health Sci. doi:10.1142/S1793545816500115
G.Y. Golubyatnikov, M.A. Shakhova, L.B. Snopova, A.B. Terent’yeva, comparative studies of infrared laser and radio-frequency action on in vitro biotissues by the method of polarization sensitive optical coherence tomography. Radiophys. Quantum Electron. 53(1), 37–44 (2010)
ADS
Article
Google Scholar
I.L. Shlivko, M.Y. Kirillin, E.V. Donchenko, D.O. Ellinsky, O.E. Garanina, V.A. Kamensky, Identification of layers in optical coherence tomography of skin: comparative analysis of experimental and Monte Carlo simulated images. Skin Res. Technol. 1, 1–7 (2015). doi:10.1111/srt.12209
Google Scholar
A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543–2555 (2005)
ADS
Article
Google Scholar
P. Taroni, A. Pifferi, A. Torricelli, L. Spinelli, G.M. Danesini, R. Cubeddu, Do shorter wavelengths improve contrast in optical mammography? Phys. Med. Biol. 49, 1203–1215 (2004). doi:10.1364/OE.17.015932
Article
Google Scholar
J.X. Zhu, D.J. Pine, D.A. Weitz, Internal reflection of diffusive light in random media. Phys. Rev. A 44, 3948 (1991)
ADS
Article
Google Scholar
M.J. Weber, Handbook of Optical Materials, The CRC Press Laser and Optical Science and Technology Series (CRC Press, Boca Raton, 2003)
Google Scholar
R.M. Verdaasdonk, F.C. Holstege, E.D. Jansen, C. Borst, Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Lasers Surg. Med. 11, 213–222 (1991)
Article
Google Scholar