Skip to main content
Log in

Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using printed organic light-emitting diodes (OLEDs) for lighting, smart-packaging and other mass-market applications has remained a dream since the first working OLED devices were demonstrated in the late 1980s. The realization of this long-term goal is hindered by the very low abundance of iridium and problems when using low-cost wet chemical production processes. Abundant, solution-processable Cu(I) complexes promise to lower the cost of OLEDs. A new copper iodide NHetPHOS emitter was prepared and characterized in solid state with photoluminescence spectroscopy and UV photoelectron spectroscopy under ambient conditions. The photoluminescence quantum efficiency was determined as 92 ± 5 % in a thin film with yellowish-green emission centered around 550 nm. This puts the material on par with the most efficient copper complexes known so far. The new compound showed superior solubility in non-polar solvents, which allowed for the fabrication of an inkjet-printed OLED device from a decalin-based ink formulation. The emission layer could be processed under ambient conditions and was annealed under air. In a very simple stack architecture, efficiency values up to 45 cd A−1 corresponding to 13.9 ± 1.9 % EQE were achieved. These promising results open the door to printed, large-scale OLED devices with abundant copper emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, Adv. Mater. 1 (2014)

  2. D. Volz, Y. Chen, M. Wallesch, R. Liu, C. Fléchon, D.M. Zink, J. Friedrichs, H. Flügge, R. Steininger, J. Göttlicher, C. Heske, L. Weinhardt, S. Bräse, F. So, T. Baumann, Adv. Mater. 27, 2538 (2015)

    Article  Google Scholar 

  3. H. Nakanotani, K. Masui, J. Nishide, T. Shibata, C. Adachi, Sci. Rep. 3, 2127 (2013)

    Article  ADS  Google Scholar 

  4. D. Volz, M. Wallesch, C. Fléchon, M. Danz, A. Verma, J.M. Navarro, D.M. Zink, S. Bräse, T. Baumann, Green Chem. 17, 1988 (2015)

    Article  Google Scholar 

  5. F. Dumur, Org. Electron. 21, 27 (2015)

    Article  Google Scholar 

  6. F. Dumur, Synth. Met. 195, 241 (2014)

    Article  Google Scholar 

  7. S. Youn Lee, T. Yasuda, H. Nomura, C. Adachi, Appl. Phys. Lett. 101, 093306 (2012)

    Article  ADS  Google Scholar 

  8. S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S.Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nat. Mater. 14, 1 (2014)

    Article  Google Scholar 

  9. K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 6, 253 (2012)

    Article  ADS  Google Scholar 

  10. M. Wallesch, D. Volz, C. Fléchon, D. M. Zink, S. Bräse, and T. Baumann, in Proc. SPIE, edited by F. So and C. Adachi (2014), p. 918309

  11. M. Wallesch, D. Volz, D. M. Zink, U. Schepers, M. Nieger, T. Baumann, and S. Bräse, Chem. Eur. J. 6578 (2014)

  12. D. Volz, D.M. Zink, T. Bocksrocker, J. Friedrichs, M. Nieger, T. Baumann, U. Lemmer, S. Bräse, Chem. Mater. 25, 3414 (2013)

    Article  Google Scholar 

  13. D.M. Zink, D. Volz, T. Baumann, M. Mydlak, H. Flügge, J. Friedrichs, M. Nieger, S. Bräse, Chem. Mater. 25, 4471 (2013)

    Article  Google Scholar 

  14. D. Volz, M. Nieger, J. Friedrichs, T. Baumann, S. Bräse, Langmuir 29, 3034 (2013)

    Article  Google Scholar 

  15. J. Leitl, V.A. Krylova, P.I. Djurovich, M.E. Thompson, H. Yersin, J. Am. Chem. Soc. 136, 16032 (2014)

    Article  Google Scholar 

  16. M.J. Leitl, F.-R.R. Küchle, H.A. Mayer, L. Wesemann, H. Yersin, J. Phys. Chem. A 117, 11823 (2013)

    Article  Google Scholar 

  17. R. Czerwieniec, K. Kowalski, H. Yersin, Dalt. Trans. 42, 9826 (2013)

    Article  Google Scholar 

  18. Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, C. Adachi, Adv. Funct. Mater. 22, 2327 (2012)

    Article  Google Scholar 

  19. S.O. Jeon, J.Y. Lee, J. Mater. Chem. 22, 7239 (2012)

    Article  Google Scholar 

  20. B. Riedel, I. Kaiser, J. Hauss, U. Lemmer, M. Gerken, Opt. Express 18, A631 (2010)

    Article  ADS  Google Scholar 

  21. H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 255, 2622 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been sponsored by the German Federal Ministry of Education and Research. (BMBF) in the funding programs “cyCESH” and “cyFLEX”. Also, we acknowledge funding from the European Union in the LEO project (H2020-ICT-2014-1 call). D.V. thanks the R&D division of CYNORA and his collaboration partners, amongst them Stefan Bräse, Clemens Heske, Uli Lemmer and Christopher Barner-Kowollik (Karlsruhe Institute of Technology), Hartmut Yersin (University of Regensburg) and Franky So (North Carolina State University) for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Volz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Zink, D.M., Fléchon, C. et al. Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex. Appl. Phys. A 122, 191 (2016). https://doi.org/10.1007/s00339-016-9726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9726-2

Keywords

Navigation