Skip to main content

Geopolymers as potential repair material in tiles conservation

Abstract

The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles (azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical–mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as “cold” cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, J. Mater. Sci. 42(9), 2917–2933 (2006). doi:10.1007/s10853-006-0637-z

    ADS  Article  Google Scholar 

  2. A. Autef, E. Joussein, G. Gasgnier, S. Rossignol, J. Non-Cryst. Solids. 358(21), 2886–2893 (2012). doi:10.1016/j.jnoncrysol.2012.07.015

    ADS  Article  Google Scholar 

  3. D. Khale, D.R. Chaudhary, J. Mater. Sci. 42(3), 729–746 (2007). doi:10.1007/s10853-006-0401-4

    ADS  Article  Google Scholar 

  4. S.B.H. Farid, Ceram. Int. 40(9), 15027–15032 (2014). doi:10.1016/j.ceramint.2014.06.106

    Article  Google Scholar 

  5. Ch. Panagiotopoulou, E. Kontori, Th Perraki, G. Kakali, J. Mater. Sci. 42(9), 2967–2973 (2006). doi:10.1007/s10853-006-0531-8

    ADS  Article  Google Scholar 

  6. H. Xu, J.S.J. Van Deventer, Int. J. Miner. Process. 59(3), 247–266 (2000). doi:10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  7. A.M. Rashad, Constr. Build. Mater. 41, 751–765 (2013). doi:10.1016/j.conbuildmat.2012.12.030

    Article  Google Scholar 

  8. P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. Van Deventer, Cem. Concr. Res. 37(12), 1590–1597 (2007). doi:10.1016/j.cemconres.2007.08.018

    Article  Google Scholar 

  9. F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Constr. Build. Mater. 22(7), 1305–1314 (2008). doi:10.1016/j.conbuildmat.2007.10.015

    Article  Google Scholar 

  10. J. Davidovits, S. Quentin, J. Therm. Anal. 37, 1633–1656 (1991)

    Article  Google Scholar 

  11. A.D. Hounsi, G. Lecomte-Nana, G. Djétéli, P. Blanchart, D. Alowanou, P. Kpelou, K. Napo, G. Tchangbédji, M. Praisler, Ceram. Int. 40(7), 8953–8962 (2014). doi:10.1016/j.ceramint.2014.02.052

    Article  Google Scholar 

  12. W. Guo, G. Wu, J. Wang, Z. Wen, S. Yin, J. Wuhan Univ. Technol. 23(3), 326–330 (2008). doi:10.1007/s11595-007-3326-0

    Article  Google Scholar 

  13. A. Pinto, Sistemas Ligantes Obtidos por Activação Alcalina do Metacaulino. Ph.D. thesis, Minho University (2004)

  14. H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. Van Assche, B. Van Mele, J. Mater. Sci. 42(9), 2982–2996 (2006). doi:10.1007/s10853-006-0568-8

    ADS  Article  Google Scholar 

  15. M. Lizcano, H.S. Kim, S. Basu, M. Radovic, J. Mater. Sci. 47(6), 2607–2616 (2011). doi:10.1007/s10853-011-6085-4

    ADS  Article  Google Scholar 

  16. Z. Zuhua, Y. Xiao, Z. Huajun, C. Yue, Appl. Clay Sci. 43(2), 218–223 (2009). doi:10.1016/j.clay.2008.09.003

    Article  Google Scholar 

  17. G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, Constr. Build. Mater. 47(2013), 409–418 (2013). doi:10.1016/j.conbuildmat.2013.05.069

    Article  Google Scholar 

  18. K.J.D. MacKenzie, D.R.M. Brew, R.A. Fletcher, R. Vagana, J. Mater. Sci. 42(12), 4667–4674 (2007). doi:10.1007/s10853-006-0173-x

    ADS  Article  Google Scholar 

  19. M. Mendes, T.A. Ferreira, J.D. Rodrigues, J.M. Mimoso, S.R.M. Pereira, Volumetric and chromatic reintegration in conservation of in situ glazed tiles. in International Conference, Glaze Ceramics in Architectural Heritage (LNEC, Lisbon, Portugal, 2015), pp 259–261

  20. T. Hanzlíček, M. Steinerová, P. Straka, I. Perná, P. Siegl, T. Švarcová, Mater. Des. 30(8), 3229–3234 (2009). doi:10.1016/j.matdes.2008.12.015

    Article  Google Scholar 

  21. K. Elert, E.S. Pardo, C. Rodriguez-Navarro, J. Cult. Herit. (2014). doi:10.1016/j.culher.2014.09.012

    Google Scholar 

  22. S. Rescic, P. Plescia, P. Cossari, E. Tempesta, D. Capitani, N. Proietti, A.M. Mecchi, Proc. Eng. 21, 1061–1071 (2011). doi:10.1016/j.proeng.2011.11.2112

    Article  Google Scholar 

  23. T. Skorina, Appl. Clay Sci. 87, 205–211 (2014). doi:10.1016/j.clay.2013.11.003

    Article  Google Scholar 

  24. ©Imerys Minerals Ltd. 2012. Europe. http://www.imerys-perfmins.com/eu/markets/building-construction.htm. Accessed 10 Oct 2014

  25. C. Kuenel, T.P. Neville, S. Donatello, L. Vandeperre, A.R. Boccaccini, C.R. Cheeseman, Appl. Clay Sci. 83–84, 308–314 (2013). doi:10.1016/j.clay.2013.08.023

    Article  Google Scholar 

  26. ©Imerys Pigments. 2010 North America http://www.imerys-perfmins.com/usa/ProductDetail.asp?PID=425. Accessed 10 October 2014

  27. J. Musacch, Conservation of historical Portuguese tiles: adhesives for outdoor exposure. Master’s Thesis (2012)

  28. C. Kuenzel, L. Vandeperre, S. Donatello, A.R. Boccaccini, C.R. Cheeseman, J. Am. Chem. Soc. 95(10), 3270–3277 (2012). doi:10.1111/j.1551-2916.2012.05380.x

    Google Scholar 

  29. I. Perná, T. Hanzlíček, M. Šupová, Appl. Clay Sci. 102, 213–219 (2014). doi:10.1016/j.clay.2014.09.042

    Article  Google Scholar 

  30. J. Xie, O. Kayali, Constr. Build. Mater. 67, 20–28 (2014). doi:10.1016/j.conbuildmat.2013.10.047

    Article  Google Scholar 

  31. M. Irfan Khan, A. Khairun, S. Suriati, Z. Man, Ceram. Int. 45(2), 2794–2805 (2015). doi:10.1016/j.ceramint.2014.10.099

    Article  Google Scholar 

  32. B. Mo, H. Zhu, X. Cui, Y. He, S. Gong, Appl. Clay Sci. 99, 144–148 (2014). doi:10.1016/j.clay.2014.06.024

    Article  Google Scholar 

  33. M.S. Muñiz-Villarreal, A. Manzano-Ramírez, S. Sampieri-Bulbarela, J.R. Gasca-Tirado, J.L. Reyes-Araiza, J.C. Rubio-Ávalos, J.J. Pérez-Bueno, L.M. Apatiga, A. Zaldivar-Cadena, V. Amigó-Borrás, Mater. Lett. 65(6), 995–998 (2011). doi:10.1016/j.matlet.2010.12.049

    Article  Google Scholar 

  34. P. Rovnaník, Constr. Build. Mater. 24(7), 1176–1183 (2010). doi:10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  35. J. Costa Pessoa, J.F. Farinha Antunes, M.O. Figueiredo, M.A. Fortes, Stud. Conserv. 41(3), 153–160 (1996). http://www.jstor.org/stable/10.2307/1506530

  36. C. Borges, C. Caetano, J. Costa Pessoa, M. Figueiredo, A. Lourenço, M. Malhoa Gomes, T.P. Silva, J.P. Veiga, J. Chromatogr. A 770(1–2), 195–201 (1997). doi:10.1016/S0021-9673(97)00175-1

    Article  Google Scholar 

  37. J.L.F. Antunes, D.S. Tavares, in dE la Cerámica Decorada estudio y la Conservación dE la Cerámica Decorada En Arquitectura, ed. by A. Balderrama, A. Vidal, I. Cardiel, E.N. Roma (ICCROM, Roma, 2003), p. 22

    Google Scholar 

  38. M.T. Mendes, S. Pereira, T. Ferreira, J. Mirão, A. Candeias, Int. J. Cons. Sci. 6(1), 51–62 (2015)

    Google Scholar 

  39. L.M. Ottosen, C.M.D. Ferreira, I.V. Christensen, J. Appl. Electrochem. 40(6), 1161–1171 (2010). doi:10.1007/s10800-010-0086-x

    Article  Google Scholar 

  40. X.X. Gao, A. Autef, E. Prud’homme, P. Michaud, E. Joussein, S. Rossignol, J. Sol-Gel. Sci. Technol. 65(2), 220–229 (2012). doi:10.1007/s10971-012-2927-z

    Article  Google Scholar 

  41. Z. Zhang, H. Wang, J.L. Provis, F. Bullen, A. Reid, Y. Zhu, Thermochim. Acta 539, 23–33 (2012). doi:10.1016/j.tca.2012.03.021

    Article  Google Scholar 

  42. A. Elimbi, H.K. Tchakoute, M. Kondoh, J.D. Manga, Ceram. Int. 40, 4515–4520 (2014). doi:10.1016/j.ceramint.2013.08.126

    Article  Google Scholar 

  43. W.K.W. Lee, J.S.J. Van Deventer, Langmuir 19, 8726–8734 (2003). doi:10.1021/la026127e

    Article  Google Scholar 

  44. V. Stubican, R. Roy, Infrared spectra of layer-structure silicates, J. Am. Cer. Soc. 44(12), 625–627 (1961). doi:10.1111/j.1151-2916.1961.tb11670.x

    Article  Google Scholar 

  45. C.A. Rees, J.S.J. van Deventer, J. Provis, G.C. Lukey, Mechanisms and kinetics of gel formation in geopolymers, PhD thesis, The University of Melbourne (2007). http://hdl.handle.net/11343/39579

  46. S. Pereira, J.M Mimoso, A. Santos Silva, Physical-Chemical characterization of historic portuguese tiles, Relatório 23/2011-NPC/NMM, LNEC (2011)

Download references

Acknowledgments

The authors acknowledge Fundação para a Ciência e a Tecnologia for financial support for the development of the present research (Project CerAzul: PTDC/CTM-CER/119085/2010 and UID/EAT/00729/2013). Cromogenia Units from Spain is thanked for providing Metastar® 501, and Nova Terracota S.A. from Portugal for the ceramic biscuits used. Norman H. Tennent and Isabel Martins are acknowledged for the discussion and advice during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia R. M. Pereira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geraldes, C.F.M., Lima, A.M., Delgado-Rodrigues, J. et al. Geopolymers as potential repair material in tiles conservation. Appl. Phys. A 122, 197 (2016). https://doi.org/10.1007/s00339-016-9709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9709-3

Keywords

  • Pore Size Distribution
  • Geopolymer
  • Fume Silica
  • Soluble Salt
  • Ceramic Substrate