Microwave heat treatment of natural ruby and its characterization

Abstract

Natural ruby (in the form of gemstone) collected from Odisha has been heat-treated by microwave (MW). A 3-kW industrial MW furnace with SiC susceptors was used for the heat treatment. The ruby samples showed noticeable improvements (qualitative), may be attributed to account for the improvement in clarity and lustre. Optical absorption in 200–800 nm range and photoluminescence peak at 693 nm (with 400 nm λ ex) clearly show that subtle changes do take place in the ruby after the heat treatment. Further, inorganic compound phases and valence states of elements (impurities) in the ruby were studied by X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The valence states of the main impurities such as Cr, Fe, and Ti, in the untreated and MW heat-treated ruby, as revealed from XPS, have been discussed in depth. The overall results demonstrate for the first time the effect of fast heating like MW on the microstructural properties of the gemstone and various oxidation states of impurity elements in the natural ruby.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, E. Tob, Sens. Actuators A Phys. 101, 42 (2002)

    Article  Google Scholar 

  2. 2.

    H.C. Seat, J.H. Sharp, Z.Y. Zhang, K.T.V. Grattan, Sens. Actuators A 101, 24 (2002)

    Article  Google Scholar 

  3. 3.

    D. Liu, Z. Zhu, H. Liu, Z. Zhang, Y. Zhang, G. Li, Mater. Res. Bull. 47, 2332 (2012)

    Article  Google Scholar 

  4. 4.

    R.K. Sahoo, B.K. Mohapatra, S.K. Singh, B.K. Mishra, Appl. Surf. Sci. 329, 23 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    S. Achiwawanich, N. Brack, B.D. James, J. Liesegang, Appl. Surf. Sci. 252, 8646 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    S. Achiwawanich, B.D. James, J. Liesegang, Appl. Surf. Sci. 253, 6883 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    S.F. McClure, C.P. Smith, W. Wang, M. Hall, Gems Gemol. 42, 22 (2006)

    Article  Google Scholar 

  8. 8.

    R.R. Menezes, P.M. Souto, R.H.G.A. Kiminami, in Sintering of Ceramic Materials—New Emerging Techniques, ed. by A. Lakshmanan (InTech, Rijeka, Croatia, 2012), p. 3

  9. 9.

    J.D. Katz, Annu. Rev. Mater. Sci. 22, 153 (1992)

    ADS  Article  Google Scholar 

  10. 10.

    R.M. Anklekar, D.K. Agrawal, R. Roy, Powder Metall. 44, 355 (2001)

    Article  Google Scholar 

  11. 11.

    G. Sethi, A. Upadhyaya, D. Agrawal, Sci. Sinter. 35, 49 (2003)

    Article  Google Scholar 

  12. 12.

    Y.V. Bykov, K.I. Rybakov, V.E. Semenov, J. Phys. D Appl. Phys. 34, R55 (2001)

    ADS  Article  Google Scholar 

  13. 13.

    S.M. Bradshaw, E.J. van Wyk, J.B. de Swardt, J. South Afr. Inst. Min. Metall. 4, 201 (1998)

    Google Scholar 

  14. 14.

    R. Heuguet, S. Marinel, A. Thuault, A. Badev, J. Am. Ceram. Soc. 96, 3728 (2013)

    Article  Google Scholar 

  15. 15.

    D.E. Clark, W.H. Sutton, Annu. Rev. Mater. Sci. 26, 299 (1996)

    ADS  Article  Google Scholar 

  16. 16.

    S. Achiwawanich, B.D. James, J. Liesegang, Appl. Surf. Sci. 255, 2388 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    Y. Takeuchi, T. Abe, T. Kageyama, H. Sakai, in Proceedings of the Particle Accelerator Conference, IEEE, vol 1195 (2005)

  18. 18.

    D. Ding, W. Zhou, B. Zhang, F. Luo, D. Zhu, J. Mater. Sci. 46, 2709 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    T.A. Baeraky, Egypt J. Solid 25, 263 (2002)

    Google Scholar 

  20. 20.

    S. Krampelas, M. Worle, J. Raman Spectrosc. 43, 1833 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    M. Jersek, S. Kramar, J. Raman Spectrosc. 45, 1000 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    L. Xia, R.L. McCreery, J. Electrochem. Soc. 145, 3083 (1998)

    Article  Google Scholar 

  23. 23.

    J.D. Ramsey, R.L. McCreery, J. Electrochem. Soc. 146, 4076 (1999)

    Article  Google Scholar 

  24. 24.

    X. Fan, Y. Wang, H. Xu, Y. Jiang, Cryst. Res. Technol. 46, 221 (2011)

    Article  Google Scholar 

  25. 25.

    T.V. Bgasheva, E.A. Ahmetshin, E.V. Zharikov, Adv. Mater. Sci. 12, 32 (2012)

    Google Scholar 

  26. 26.

    X. Yang, H. Li, Y. Cheng, Q. Tang, L. Su, J. Xu, J. Cryst. Growth 310, 3800 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    L. Shen, C. Hu, S. Zhou, A. Mukherjee, Q. Huang, Opt. Mater. 35, 1268 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    L.-Y. Yang, Y.-J. Dong, D.-P. Chen, C. Wang, N. Da, X.W. Jiang, C. Zhu, J.-R. Qiu, Opt. Express 13, 7893 (2005)

    ADS  Article  Google Scholar 

  29. 29.

    K.T.V. Grattan, Z.Y. Zhang, Fiber Optic Fluorescence Thermometry, 1st edn. (Chapman & Hall, London, 1995), p. 35

    Google Scholar 

  30. 30.

    C.D. Wagner, W.M. Riggs, L.E. Davis, G.E. Muilenberg (eds.), Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Minnesota, 1978)

    Google Scholar 

  31. 31.

    M. Ohkubu, T. Hioki, J. Kawamoto, J. Appl. Phys. 60, 1325 (1986)

    ADS  Article  Google Scholar 

  32. 32.

    G.C. Farlow, C.W. White, C.J. McHargue, B.R. Appleton, Mater. Res. Soc. Symp. Proc. 27, 395 (1984)

    Article  Google Scholar 

  33. 33.

    H. Naramoto, C.W. White, J.M. Williams, C.J. McHargue, O.W. Holland, M.M. Abramham, B.R. Appleton, J. Appl. Phys. 54, 683 (1983)

    ADS  Article  Google Scholar 

  34. 34.

    P. Mills, J.L. Sullivan, J. Phys. D Appl. Phys. 16, 723 (1983)

    ADS  Article  Google Scholar 

  35. 35.

    D.D. Hawn, B.M. Dekoven, Surf. Interface Anal. 10, 63 (1987)

    Article  Google Scholar 

  36. 36.

    M. Muhler, R. Schlogl, G. Ertl, J. Catal. 138, 413 (1992)

    Article  Google Scholar 

  37. 37.

    K. Eigenmann, K. Kurtz, H.H. Gunthard, Chem. Phys. Lett. 13, 54 (1972)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

Financial support of CSIR for this work carried out under Project ESC-206 is thankfully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Pradhan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swain, S., Pradhan, S.K., Jeevitha, M. et al. Microwave heat treatment of natural ruby and its characterization. Appl. Phys. A 122, 224 (2016). https://doi.org/10.1007/s00339-016-9703-9

Download citation

Keywords

  • Ruby
  • Fluorescence Lifetime
  • Conventional Heating Method
  • Blue Patch
  • TiO2 Cluster