Advertisement

Applied Physics A

, 122:224 | Cite as

Microwave heat treatment of natural ruby and its characterization

  • S. Swain
  • S. K. PradhanEmail author
  • M. Jeevitha
  • P. Acharya
  • M. Debata
  • T. Dash
  • B. B. Nayak
  • B. K. Mishra
Article

Abstract

Natural ruby (in the form of gemstone) collected from Odisha has been heat-treated by microwave (MW). A 3-kW industrial MW furnace with SiC susceptors was used for the heat treatment. The ruby samples showed noticeable improvements (qualitative), may be attributed to account for the improvement in clarity and lustre. Optical absorption in 200–800 nm range and photoluminescence peak at 693 nm (with 400 nm λ ex) clearly show that subtle changes do take place in the ruby after the heat treatment. Further, inorganic compound phases and valence states of elements (impurities) in the ruby were studied by X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The valence states of the main impurities such as Cr, Fe, and Ti, in the untreated and MW heat-treated ruby, as revealed from XPS, have been discussed in depth. The overall results demonstrate for the first time the effect of fast heating like MW on the microstructural properties of the gemstone and various oxidation states of impurity elements in the natural ruby.

Keywords

Ruby Fluorescence Lifetime Conventional Heating Method Blue Patch TiO2 Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support of CSIR for this work carried out under Project ESC-206 is thankfully acknowledged.

References

  1. 1.
    H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, E. Tob, Sens. Actuators A Phys. 101, 42 (2002)CrossRefGoogle Scholar
  2. 2.
    H.C. Seat, J.H. Sharp, Z.Y. Zhang, K.T.V. Grattan, Sens. Actuators A 101, 24 (2002)CrossRefGoogle Scholar
  3. 3.
    D. Liu, Z. Zhu, H. Liu, Z. Zhang, Y. Zhang, G. Li, Mater. Res. Bull. 47, 2332 (2012)CrossRefGoogle Scholar
  4. 4.
    R.K. Sahoo, B.K. Mohapatra, S.K. Singh, B.K. Mishra, Appl. Surf. Sci. 329, 23 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    S. Achiwawanich, N. Brack, B.D. James, J. Liesegang, Appl. Surf. Sci. 252, 8646 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S. Achiwawanich, B.D. James, J. Liesegang, Appl. Surf. Sci. 253, 6883 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S.F. McClure, C.P. Smith, W. Wang, M. Hall, Gems Gemol. 42, 22 (2006)CrossRefGoogle Scholar
  8. 8.
    R.R. Menezes, P.M. Souto, R.H.G.A. Kiminami, in Sintering of Ceramic Materials—New Emerging Techniques, ed. by A. Lakshmanan (InTech, Rijeka, Croatia, 2012), p. 3Google Scholar
  9. 9.
    J.D. Katz, Annu. Rev. Mater. Sci. 22, 153 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    R.M. Anklekar, D.K. Agrawal, R. Roy, Powder Metall. 44, 355 (2001)CrossRefGoogle Scholar
  11. 11.
    G. Sethi, A. Upadhyaya, D. Agrawal, Sci. Sinter. 35, 49 (2003)CrossRefGoogle Scholar
  12. 12.
    Y.V. Bykov, K.I. Rybakov, V.E. Semenov, J. Phys. D Appl. Phys. 34, R55 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Bradshaw, E.J. van Wyk, J.B. de Swardt, J. South Afr. Inst. Min. Metall. 4, 201 (1998)Google Scholar
  14. 14.
    R. Heuguet, S. Marinel, A. Thuault, A. Badev, J. Am. Ceram. Soc. 96, 3728 (2013)CrossRefGoogle Scholar
  15. 15.
    D.E. Clark, W.H. Sutton, Annu. Rev. Mater. Sci. 26, 299 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    S. Achiwawanich, B.D. James, J. Liesegang, Appl. Surf. Sci. 255, 2388 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Takeuchi, T. Abe, T. Kageyama, H. Sakai, in Proceedings of the Particle Accelerator Conference, IEEE, vol 1195 (2005)Google Scholar
  18. 18.
    D. Ding, W. Zhou, B. Zhang, F. Luo, D. Zhu, J. Mater. Sci. 46, 2709 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    T.A. Baeraky, Egypt J. Solid 25, 263 (2002)Google Scholar
  20. 20.
    S. Krampelas, M. Worle, J. Raman Spectrosc. 43, 1833 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Jersek, S. Kramar, J. Raman Spectrosc. 45, 1000 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    L. Xia, R.L. McCreery, J. Electrochem. Soc. 145, 3083 (1998)CrossRefGoogle Scholar
  23. 23.
    J.D. Ramsey, R.L. McCreery, J. Electrochem. Soc. 146, 4076 (1999)CrossRefGoogle Scholar
  24. 24.
    X. Fan, Y. Wang, H. Xu, Y. Jiang, Cryst. Res. Technol. 46, 221 (2011)CrossRefGoogle Scholar
  25. 25.
    T.V. Bgasheva, E.A. Ahmetshin, E.V. Zharikov, Adv. Mater. Sci. 12, 32 (2012)Google Scholar
  26. 26.
    X. Yang, H. Li, Y. Cheng, Q. Tang, L. Su, J. Xu, J. Cryst. Growth 310, 3800 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    L. Shen, C. Hu, S. Zhou, A. Mukherjee, Q. Huang, Opt. Mater. 35, 1268 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    L.-Y. Yang, Y.-J. Dong, D.-P. Chen, C. Wang, N. Da, X.W. Jiang, C. Zhu, J.-R. Qiu, Opt. Express 13, 7893 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    K.T.V. Grattan, Z.Y. Zhang, Fiber Optic Fluorescence Thermometry, 1st edn. (Chapman & Hall, London, 1995), p. 35Google Scholar
  30. 30.
    C.D. Wagner, W.M. Riggs, L.E. Davis, G.E. Muilenberg (eds.), Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Minnesota, 1978)Google Scholar
  31. 31.
    M. Ohkubu, T. Hioki, J. Kawamoto, J. Appl. Phys. 60, 1325 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    G.C. Farlow, C.W. White, C.J. McHargue, B.R. Appleton, Mater. Res. Soc. Symp. Proc. 27, 395 (1984)CrossRefGoogle Scholar
  33. 33.
    H. Naramoto, C.W. White, J.M. Williams, C.J. McHargue, O.W. Holland, M.M. Abramham, B.R. Appleton, J. Appl. Phys. 54, 683 (1983)ADSCrossRefGoogle Scholar
  34. 34.
    P. Mills, J.L. Sullivan, J. Phys. D Appl. Phys. 16, 723 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    D.D. Hawn, B.M. Dekoven, Surf. Interface Anal. 10, 63 (1987)CrossRefGoogle Scholar
  36. 36.
    M. Muhler, R. Schlogl, G. Ertl, J. Catal. 138, 413 (1992)CrossRefGoogle Scholar
  37. 37.
    K. Eigenmann, K. Kurtz, H.H. Gunthard, Chem. Phys. Lett. 13, 54 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Swain
    • 1
  • S. K. Pradhan
    • 1
    Email author
  • M. Jeevitha
    • 1
  • P. Acharya
    • 1
  • M. Debata
    • 1
  • T. Dash
    • 1
  • B. B. Nayak
    • 1
  • B. K. Mishra
    • 1
  1. 1.CSIR- Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations