Skip to main content

Simultaneous deposition of carbon nanotubes and decoration with gold–palladium nanoparticles by laser-induced forward transfer

Abstract

Decorating carbon nanotubes (CNTs) with nanoparticles has proved to be an intelligent approach to improve the gas adsorption properties of CNTs for the development of new sensors, including hydrogen sensors. However, in order to take advantage of this hybrid structure, methods are needed that ensure a proper decoration and the fabrication of small features without compromising the sensing surface. Within this paper, we report a novel technique to simultaneously decorate multiwall carbon nanotubes (MWCNTs) with gold–palladium nanoparticles and transfer them to a substrate by laser-induced forward transfer using femtosecond laser pulses. The nanoparticles decorating the MWCNTs present a spherical shape with a Feret diameter bellow 200 nm. The nanoparticle size can be tuned by varying the amount of pulses within the transfer. Finally, hydrogen adsorption showed up to a 20-fold increase compared to a sample composed of non-transferred, non-decorated MWCNTs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19, 332001 (2008)

    Article  Google Scholar 

  2. 2.

    C. Tasaltin, F. Basarir, Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuators B Chem. 194, 173–179 (2014)

    Article  Google Scholar 

  3. 3.

    W.-D. Zhang, W.-H. Zhang, Carbon nanotubes as active components for gas sensors. J. Sens. 2009, 1–16 (2009)

    Google Scholar 

  4. 4.

    A. Star, V. Joshi, S. Skarupo, D. Thomas, J.-C.P. Gabriel, Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110, 21014–21020 (2006)

    Article  Google Scholar 

  5. 5.

    R. Singh, T. Premkumar, J.-Y. Shin, K.E. Geckeler, Carbon nanotube and gold-based materials: a symbiosis. Chem. A Eur. J. 16, 1728–1743 (2010)

    Article  Google Scholar 

  6. 6.

    Z. Zanolli, R. Leghrib, A. Felten, J.-J. Pireaux, E. Llobet, J.-C. Charlier, Gas sensing with Au-decorated carbon nanotubes. ACS Nano 5, 4592–4599 (2011)

    Article  Google Scholar 

  7. 7.

    M. Han, D. Jung, G.S. Lee, Palladium-nanoparticle-coated carbon nanotube gas sensor. Chem. Phys. Lett. 610–611, 261–266 (2014)

    Article  Google Scholar 

  8. 8.

    R.Y. Zhang, H. Olin, Gold-carbon nanotube nanocomposites: synthesis and applications. Int. J. Biomed. Nanosci. Nanotechnol. 2, 112 (2011)

    Article  Google Scholar 

  9. 9.

    S. Mao, L. Ganhua, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2, 5573–5579 (2014)

    Article  Google Scholar 

  10. 10.

    C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 96, 041104 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    S.-K. Chang-Jian, J.-R. Ho, Laser patterning of carbon-nanotubes thin films and their applications, in Carbon Nanotubes Applications on Electron Devices, ed. by J.M. Marulanda (In Tech, 2011)

  12. 12.

    M. Kandyla, C. Pandis, S. Chatzandroulis, P. Pissis, I. Zergioti, Direct laser printing of thin-film polyaniline devices. Appl. Phys. A 110, 623–628 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    A. Palla-Papavlu, V. Dinca, M. Dinescu, F. Pietrantonio, D. Cannatà, M. Benetti et al., Matrix-assisted pulsed laser evaporation of chemoselective polymers. Appl. Phys. A 105, 651–659 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    P. Cavallo, R.C. Rodriguez, M. Broglia, D.F. Acevedo, C.A. Barbero, Simple fabrication of active electrodes using direct laser transference. Electrochim. Acta 116, 194–202 (2014)

    Article  Google Scholar 

  15. 15.

    C. Boutopoulos, V. Tsouti, D. Goustouridis, S. Chatzandroulis, I. Zergioti, Liquid phase direct laser printing of polymers for chemical sensing applications. Appl. Phys. Lett. 93, 191109 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    V. Sametoglu, V. Sauer, Y.Y. Tsui, Nanoscale laser-induced forward transfer through patterned Cr films. Appl. Phys. A 110, 823–827 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    D. Banks, C. Grivas, I. Zergioti, R.W. Eason, Ballistic laser-assisted solid transfer (blast) from a thin film precursor. Opt. Express 16, 3249–3254 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    M.C. Sow, J.-P. Blondeau, N. Sagot, N. Ollier, T. Tite, Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation. Appl. Surf. Sci. 336, 255–261 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    M.L. Tseng, C.M. Chang, B.H. Chen, Y.-W. Huang, C.H. Chu, K.S. Chung et al., Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique. Nanotechnology 23, 444013 (2012)

    Article  Google Scholar 

  20. 20.

    V. Sametoglu, V.T.K. Sauer, Y.Y. Tsui, Production of 70-nm Cr dots by laser-induced forward transfer. Opt. Express 21, 18525–18531 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulos et al., Microdeposition of metal and oxide structures using ultrashort laser pulses. Appl. Phys. A Mater. Sci. Process. 66(5), 579–582 (1998)

    ADS  Article  Google Scholar 

  22. 22.

    D.P. Banks, C. Grivas, J.D. Mills, R.W. Eason, I. Zergioti, Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer. Appl. Phys. Lett. 89, 40–43 (2006)

    Article  Google Scholar 

  23. 23.

    C.M. Othon, A. Laracuente, H.D. Ladouceur, B.R. Ringeisen, Sub-micron parallel laser direct-write. Appl. Surf. Sci. 255, 3407–3413 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H.P. Huber et al., Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness. Phys. Procedia 56, 1007–1014 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    R.D. Murphy, B. Torralva, S.M. Yalisove, The role of an interface on Ni film removal and surface roughness after irradiation by femtosecond laser pulses. Appl. Phys. Lett. 102, 1–6 (2013)

    Google Scholar 

  26. 26.

    R.D. Murphy, M.J. Abere, K.J. Schrider, B. Torralva, S.M. Yalisove, Nanoparticle size and morphology control using ultrafast laser induced forward transfer of Ni thin films. Appl. Phys. Lett. 103, 2011–2016 (2013)

    Google Scholar 

  27. 27.

    M. La Rigout, H. Niu, C. Qin, L. Zhang, C. Li, X. Bai et al., Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer. Nanotechnology 19, 245303 (2008)

    ADS  Article  Google Scholar 

  28. 28.

    A. Klini, A. Mourka, V. Dinca, C. Fotakis, F. Claeyssens, ZnO nanorod micropatterning via laser-induced forward transfer. Appl. Phys. A 87, 17–22 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    V. Tsouti, C. Boutopoulos, D. Goustouridis, I. Zergioti, P. Normand, D. Tsoukalas et al., A chemical sensor microarray realized by laser printing of polymers. Sens. Actuators B Chem. 150, 148–153 (2010)

    Article  Google Scholar 

  30. 30.

    T. Mattle, A. Hintennach, T. Lippert, A. Wokaun, Laser induced forward transfer of SnO2 for sensing applications using different precursors systems. Appl. Phys. A 110, 309–316 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    S.-K. Chang-Jian, J.-R. Ho, J.-W.J. Cheng, C.-K. Sung, Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method. Nanotechnology 17, 1184–1187 (2006)

    ADS  Article  Google Scholar 

  32. 32.

    J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch et al., Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012)

    Article  Google Scholar 

  33. 33.

    E. Mosquera, D.E. Diaz-Droguett, N. Carvajal, M. Roble, M. Morel, R. Espinoza, Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diam. Relat. Mater. 43, 66–71 (2014)

    ADS  Article  Google Scholar 

  34. 34.

    G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959)

    ADS  Article  Google Scholar 

  35. 35.

    EDAX, Genesis Spectrum User’s Manual (2006)

  36. 36.

    L. Yang, C.Y. Wang, X.C. Ni, Z.J. Wang, W. Jia, L. Chai, Microdroplet deposition of copper film by femtosecond laser-induced forward transfer. Appl. Phys. Lett. 89, 2006–2008 (2006)

    Google Scholar 

  37. 37.

    A. Klini, P.A. Loukakos, D. Gray, A. Manousaki, C. Fotakis, Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses. Opt. Express 16, 11300–11309 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    C.M. Rouleau, C.-Y. Shih, C. Wu, L.V. Zhigilei, A.A. Puretzky, D.B. Geohegan, Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: Time-resolved measurements and molecular dynamics simulations. Appl. Phys. Lett. 104(19), 193106 (2014)

    ADS  Article  Google Scholar 

  39. 39.

    V. Datsyuk, M. Lisunova, M. Kasimir, S. Trotsenko, K. Gharagozloo-Hubmann, I. Firkowska et al., Thermal transport of oil and polymer composites filled with carbon nanotubes. Appl. Phys. A 105, 781–788 (2011)

    ADS  Article  Google Scholar 

  40. 40.

    A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A Mater. Sci. Process. 106, 479–487 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8), 2581–2602 (2011)

    Article  Google Scholar 

  42. 42.

    R.A. DiLeo, B.J. Landi, R.P. Raffaelle, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 101, 064307 (2007)

    ADS  Article  Google Scholar 

  43. 43.

    A. Palla-Papavlu, M. Dinescu, A. Wokaun, T. Lippert, Laser-induced forward transfer of single-walled carbon nanotubes. Appl. Phys. A. 117(1), 371–376 (2014)

    ADS  Article  Google Scholar 

  44. 44.

    S.M. Seo, T.J. Kang, J.H. Cheon, J. Lim, I.Y. Chung, Y.H. Kim et al., Statistical property of the effect of Au nanoparticle decoration on the carbon nanotube network. Appl. Phys. Lett. 98, 143106 (2011)

    ADS  Article  Google Scholar 

  45. 45.

    S.M. Seo, T.J. Kang, J.H. Cheon, Y.H. Kim, Y.J. Park, Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold-nanoparticle decorated SWCNT network. Sens. Actuators B Chem. 204, 716–722 (2014)

    Article  Google Scholar 

  46. 46.

    I. Lundström, M. Shivaraman, C. Svensson, Chemical reactions on palladium surfaces studied with Pd-MOS structures. Surf. Sci. 64, 497–519 (1977)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

F. Lasserre, A. Rosenkranz, N. Souza Carmona and F. Mücklich wish to acknowledge the EFRE Funds of the European Commission for support of activities within the AME-Lab project. This work was supported by SUMA2 Network Project, 7th Framework Program of the European Commission (IRSES Project N° 318903). E. Ramos-Moore thanks the financial support of Fondecyt-Chile through the Grant 11121630. D.E. Diaz-Droguett thanks the Fondecyt Project 11130555 from Chilean Government and Professor Alejandro Cabrera from Physics Institute-PUC Chile for the use of his gas adsorption chamber. Jun.-Prof. Volker Presser (INM GmbH) is gratefully acknowledged for providing assistance with the Raman measurements. Prof. Cesár Barbero (UNRC), Dr. Carsten Gachot, and Dr. Sebastián Suárez (UdS) are kindly acknowledged for discussions and corrections.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Federico Lasserre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 544 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lasserre, F., Rosenkranz, A., Souza Carmona, N. et al. Simultaneous deposition of carbon nanotubes and decoration with gold–palladium nanoparticles by laser-induced forward transfer. Appl. Phys. A 122, 150 (2016). https://doi.org/10.1007/s00339-016-9682-x

Download citation

Keywords

  • Quartz Crystal Microbalance
  • Palladium Nanoparticles
  • Sensor Fabrication
  • Feret Diameter
  • Donor Film