Applied Physics A

, 122:150 | Cite as

Simultaneous deposition of carbon nanotubes and decoration with gold–palladium nanoparticles by laser-induced forward transfer

  • Federico Lasserre
  • Andreas Rosenkranz
  • Nicolás Souza Carmona
  • Martín Roble
  • Esteban Ramos-Moore
  • Donovan E. Diaz-Droguett
  • Frank Mücklich


Decorating carbon nanotubes (CNTs) with nanoparticles has proved to be an intelligent approach to improve the gas adsorption properties of CNTs for the development of new sensors, including hydrogen sensors. However, in order to take advantage of this hybrid structure, methods are needed that ensure a proper decoration and the fabrication of small features without compromising the sensing surface. Within this paper, we report a novel technique to simultaneously decorate multiwall carbon nanotubes (MWCNTs) with gold–palladium nanoparticles and transfer them to a substrate by laser-induced forward transfer using femtosecond laser pulses. The nanoparticles decorating the MWCNTs present a spherical shape with a Feret diameter bellow 200 nm. The nanoparticle size can be tuned by varying the amount of pulses within the transfer. Finally, hydrogen adsorption showed up to a 20-fold increase compared to a sample composed of non-transferred, non-decorated MWCNTs.


Quartz Crystal Microbalance Palladium Nanoparticles Sensor Fabrication Feret Diameter Donor Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



F. Lasserre, A. Rosenkranz, N. Souza Carmona and F. Mücklich wish to acknowledge the EFRE Funds of the European Commission for support of activities within the AME-Lab project. This work was supported by SUMA2 Network Project, 7th Framework Program of the European Commission (IRSES Project N° 318903). E. Ramos-Moore thanks the financial support of Fondecyt-Chile through the Grant 11121630. D.E. Diaz-Droguett thanks the Fondecyt Project 11130555 from Chilean Government and Professor Alejandro Cabrera from Physics Institute-PUC Chile for the use of his gas adsorption chamber. Jun.-Prof. Volker Presser (INM GmbH) is gratefully acknowledged for providing assistance with the Raman measurements. Prof. Cesár Barbero (UNRC), Dr. Carsten Gachot, and Dr. Sebastián Suárez (UdS) are kindly acknowledged for discussions and corrections.

Supplementary material

339_2016_9682_MOESM1_ESM.docx (545 kb)
Supplementary material 1 (DOCX 544 kb)


  1. 1.
    T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19, 332001 (2008)CrossRefGoogle Scholar
  2. 2.
    C. Tasaltin, F. Basarir, Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuators B Chem. 194, 173–179 (2014)CrossRefGoogle Scholar
  3. 3.
    W.-D. Zhang, W.-H. Zhang, Carbon nanotubes as active components for gas sensors. J. Sens. 2009, 1–16 (2009)Google Scholar
  4. 4.
    A. Star, V. Joshi, S. Skarupo, D. Thomas, J.-C.P. Gabriel, Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110, 21014–21020 (2006)CrossRefGoogle Scholar
  5. 5.
    R. Singh, T. Premkumar, J.-Y. Shin, K.E. Geckeler, Carbon nanotube and gold-based materials: a symbiosis. Chem. A Eur. J. 16, 1728–1743 (2010)CrossRefGoogle Scholar
  6. 6.
    Z. Zanolli, R. Leghrib, A. Felten, J.-J. Pireaux, E. Llobet, J.-C. Charlier, Gas sensing with Au-decorated carbon nanotubes. ACS Nano 5, 4592–4599 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Han, D. Jung, G.S. Lee, Palladium-nanoparticle-coated carbon nanotube gas sensor. Chem. Phys. Lett. 610–611, 261–266 (2014)CrossRefGoogle Scholar
  8. 8.
    R.Y. Zhang, H. Olin, Gold-carbon nanotube nanocomposites: synthesis and applications. Int. J. Biomed. Nanosci. Nanotechnol. 2, 112 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Mao, L. Ganhua, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2, 5573–5579 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 96, 041104 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S.-K. Chang-Jian, J.-R. Ho, Laser patterning of carbon-nanotubes thin films and their applications, in Carbon Nanotubes Applications on Electron Devices, ed. by J.M. Marulanda (In Tech, 2011)Google Scholar
  12. 12.
    M. Kandyla, C. Pandis, S. Chatzandroulis, P. Pissis, I. Zergioti, Direct laser printing of thin-film polyaniline devices. Appl. Phys. A 110, 623–628 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    A. Palla-Papavlu, V. Dinca, M. Dinescu, F. Pietrantonio, D. Cannatà, M. Benetti et al., Matrix-assisted pulsed laser evaporation of chemoselective polymers. Appl. Phys. A 105, 651–659 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P. Cavallo, R.C. Rodriguez, M. Broglia, D.F. Acevedo, C.A. Barbero, Simple fabrication of active electrodes using direct laser transference. Electrochim. Acta 116, 194–202 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Boutopoulos, V. Tsouti, D. Goustouridis, S. Chatzandroulis, I. Zergioti, Liquid phase direct laser printing of polymers for chemical sensing applications. Appl. Phys. Lett. 93, 191109 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    V. Sametoglu, V. Sauer, Y.Y. Tsui, Nanoscale laser-induced forward transfer through patterned Cr films. Appl. Phys. A 110, 823–827 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D. Banks, C. Grivas, I. Zergioti, R.W. Eason, Ballistic laser-assisted solid transfer (blast) from a thin film precursor. Opt. Express 16, 3249–3254 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Sow, J.-P. Blondeau, N. Sagot, N. Ollier, T. Tite, Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation. Appl. Surf. Sci. 336, 255–261 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    M.L. Tseng, C.M. Chang, B.H. Chen, Y.-W. Huang, C.H. Chu, K.S. Chung et al., Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique. Nanotechnology 23, 444013 (2012)CrossRefGoogle Scholar
  20. 20.
    V. Sametoglu, V.T.K. Sauer, Y.Y. Tsui, Production of 70-nm Cr dots by laser-induced forward transfer. Opt. Express 21, 18525–18531 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulos et al., Microdeposition of metal and oxide structures using ultrashort laser pulses. Appl. Phys. A Mater. Sci. Process. 66(5), 579–582 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    D.P. Banks, C. Grivas, J.D. Mills, R.W. Eason, I. Zergioti, Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer. Appl. Phys. Lett. 89, 40–43 (2006)CrossRefGoogle Scholar
  23. 23.
    C.M. Othon, A. Laracuente, H.D. Ladouceur, B.R. Ringeisen, Sub-micron parallel laser direct-write. Appl. Surf. Sci. 255, 3407–3413 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H.P. Huber et al., Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness. Phys. Procedia 56, 1007–1014 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    R.D. Murphy, B. Torralva, S.M. Yalisove, The role of an interface on Ni film removal and surface roughness after irradiation by femtosecond laser pulses. Appl. Phys. Lett. 102, 1–6 (2013)Google Scholar
  26. 26.
    R.D. Murphy, M.J. Abere, K.J. Schrider, B. Torralva, S.M. Yalisove, Nanoparticle size and morphology control using ultrafast laser induced forward transfer of Ni thin films. Appl. Phys. Lett. 103, 2011–2016 (2013)Google Scholar
  27. 27.
    M. La Rigout, H. Niu, C. Qin, L. Zhang, C. Li, X. Bai et al., Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer. Nanotechnology 19, 245303 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Klini, A. Mourka, V. Dinca, C. Fotakis, F. Claeyssens, ZnO nanorod micropatterning via laser-induced forward transfer. Appl. Phys. A 87, 17–22 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    V. Tsouti, C. Boutopoulos, D. Goustouridis, I. Zergioti, P. Normand, D. Tsoukalas et al., A chemical sensor microarray realized by laser printing of polymers. Sens. Actuators B Chem. 150, 148–153 (2010)CrossRefGoogle Scholar
  30. 30.
    T. Mattle, A. Hintennach, T. Lippert, A. Wokaun, Laser induced forward transfer of SnO2 for sensing applications using different precursors systems. Appl. Phys. A 110, 309–316 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    S.-K. Chang-Jian, J.-R. Ho, J.-W.J. Cheng, C.-K. Sung, Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method. Nanotechnology 17, 1184–1187 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch et al., Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012)CrossRefGoogle Scholar
  33. 33.
    E. Mosquera, D.E. Diaz-Droguett, N. Carvajal, M. Roble, M. Morel, R. Espinoza, Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diam. Relat. Mater. 43, 66–71 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959)ADSCrossRefGoogle Scholar
  35. 35.
    EDAX, Genesis Spectrum User’s Manual (2006)Google Scholar
  36. 36.
    L. Yang, C.Y. Wang, X.C. Ni, Z.J. Wang, W. Jia, L. Chai, Microdroplet deposition of copper film by femtosecond laser-induced forward transfer. Appl. Phys. Lett. 89, 2006–2008 (2006)Google Scholar
  37. 37.
    A. Klini, P.A. Loukakos, D. Gray, A. Manousaki, C. Fotakis, Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses. Opt. Express 16, 11300–11309 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    C.M. Rouleau, C.-Y. Shih, C. Wu, L.V. Zhigilei, A.A. Puretzky, D.B. Geohegan, Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: Time-resolved measurements and molecular dynamics simulations. Appl. Phys. Lett. 104(19), 193106 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    V. Datsyuk, M. Lisunova, M. Kasimir, S. Trotsenko, K. Gharagozloo-Hubmann, I. Firkowska et al., Thermal transport of oil and polymer composites filled with carbon nanotubes. Appl. Phys. A 105, 781–788 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A Mater. Sci. Process. 106, 479–487 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8), 2581–2602 (2011)CrossRefGoogle Scholar
  42. 42.
    R.A. DiLeo, B.J. Landi, R.P. Raffaelle, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 101, 064307 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    A. Palla-Papavlu, M. Dinescu, A. Wokaun, T. Lippert, Laser-induced forward transfer of single-walled carbon nanotubes. Appl. Phys. A. 117(1), 371–376 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    S.M. Seo, T.J. Kang, J.H. Cheon, J. Lim, I.Y. Chung, Y.H. Kim et al., Statistical property of the effect of Au nanoparticle decoration on the carbon nanotube network. Appl. Phys. Lett. 98, 143106 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    S.M. Seo, T.J. Kang, J.H. Cheon, Y.H. Kim, Y.J. Park, Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold-nanoparticle decorated SWCNT network. Sens. Actuators B Chem. 204, 716–722 (2014)CrossRefGoogle Scholar
  46. 46.
    I. Lundström, M. Shivaraman, C. Svensson, Chemical reactions on palladium surfaces studied with Pd-MOS structures. Surf. Sci. 64, 497–519 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chair of Functional Materials, Department of Materials ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Instituto de FísicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations