Advertisement

Applied Physics A

, 122:260 | Cite as

Relationship of vibro-mechanical properties and microstructure of wood and varnish interface in string instruments

  • Marjan Sedighi GilaniEmail author
  • Johanna Pflaum
  • Stefan Hartmann
  • Rolf Kaufmann
  • Michael Baumgartner
  • Francis Willis Mathew Robert Schwarze
Invited Paper

Abstract

Wood varnish coatings not only are aesthetically important, but also preserve the musical instrument from wear and fluctuations in the ambient humidity. Depending on the thickness, extent of penetration into the wood and the physical and mechanical properties after hardening, varnishes may change the mechanical and also vibro-acoustical properties of the coated wood. Contrary to studies on the chemistry of the varnish and primer used for old and contemporary musical instruments, the physical and mechanical properties of the varnished wood in relation to the geometry of their interface have been poorly studied. We implemented non-destructive test methods, i.e., vibration tests and X-ray tomography, to characterize the hardening-dependent change in the vibrational properties of master grade tone wood specimens after coating with four different varnishes. Two were manufactured in the laboratory, and two were supplied from master violin makers. For a controlled accelerated hardening of the varnish, a UV exposure method was used. It was demonstrated that varnishes increase wood damping, along and perpendicular to the grain directions. Varnishes reduce the sound radiation along the grain, but increase it in the perpendicular direction. Changes in the vibrational properties were discussed together with results of 3D images of wood and varnish microstructure, obtained from a customized tabletop X-ray microtomographic setup. For comparison, the microstructure of the interface of the varnished wood in the laboratory and of specimens from two old violins was analyzed with the same X-ray tomography setup. Laboratory varnishes with various compositions penetrated differently into the wood structure. One varnish of a master grade old violin had a higher density and was also thicker and penetrated weaker into the wood, which is more likely related to a more sophisticated primer and varnish application. The study demonstrates the importance of the vibro-mechanical properties of varnish, its chemical composition, thickness and penetration into wood.

Keywords

Equilibrium Moisture Content Wood Specimen Vibrational Property Wood Cell Wall Sound Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge the financial support of the Walter Fischli Foundation and COST Action FP1302. We also acknowledge the support of Daniel Heer and Markus Heeb for rigorous sample preparation at EMPA wood workshop and Iris Brémaud for making it possible to use her developed vibrational testing hardware and software.

References

  1. 1.
    R. Mayer, The Artist’s Handbook of Materials and Techniques (Viking Press, New York, 1940)Google Scholar
  2. 2.
    R.B. Adusumalli, R. Raghavan, R. Ghisleni, T. Zimmermann, J. Michler, Appl. Phys. A 100, 447–452 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    C. Fritz, J. Curtin, J. Poitevineau, H. Borsarello, I. Wollman, F.C. Tao, T. Ghasarossian, PNAS 111(20), 7224–7229 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    M. Malagodi, C. Canevari, L. Bonizzoni, A. Galli, F. Maspero, M. Martini, Appl. Phys. A (2013). doi: 10.1007/s00339-013-7792-2 Google Scholar
  5. 5.
    J.P. Echard, B. Lavédrine, J. Cult. Herit. 9, 420–429 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Caruso, S. Saverwyns, M. Van Bos, D. Francesca, C. Martino, A.E. Ceulemans, J. de Valck, E. Caponetti, Appl. Phys. A (2012). doi: 10.1007/s00339-011-6729-x Google Scholar
  7. 7.
    T. Rovetta, C. Canevari, L. Festa, M. Licchelli, S. Prati, M. Malagodi, Appl. Phys. A (2015). doi: 10.1007/s00339-014-8882-5 Google Scholar
  8. 8.
    G. Latour, J.P. Echard, M. Didier, M.C. Schanne-Klein, Opt. Express 20(22), 24623–24635 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    C.Y. Barlow, J. Woodhouse, JCAS 1(4), 2–9 (1989)Google Scholar
  10. 10.
    G. Latour, J.P. Echard, B. Soulierm, I. Emond, S. Vaiedelich, M. Elias, Appl. Opt. 48(33), 6485–6491 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    N. Sodini, D. Dreossi, R. Chen, M. Fioravanti, A. Giordano, P. Herrestal, L. Rigon, F. Zanini, J. Cult. Herit. 13, 44–49 (2012)CrossRefGoogle Scholar
  12. 12.
    M.P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, V. D’Errico, Appl. Phys. A 100, 653–661 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    P. Reischig, L. Helfen, A. Wallert, T. Baumbach, J. Dik, Appl. Phys. A 111, 983–995 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P. Dredge, S. Ives, D.L. Howard, K.M. Spiers, A. Yip, S. Kenderdine, Appl. Phys. A (2015). doi: 10.1007/s00339-015-9455-y Google Scholar
  15. 15.
    D. Haines, Catgut Acoust. Soc. Newsl. 33, 19–23 (1980)Google Scholar
  16. 16.
    T. Ono, M. Norimoto, Jpn. J. Appl. Phys. 22, 611–614 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    T. Ono, J. Acoust. Soc. Jpn. (E) 14, 397–407 (1993)CrossRefGoogle Scholar
  18. 18.
    M. Schleske, Catgut Acoust. Soc. J. 3(6, 2), 27–43 (1998)Google Scholar
  19. 19.
    M. Schleske, Catgut Acoust. Soc. J. 4(5, 2), 50–64 (2002)Google Scholar
  20. 20.
    E. Obataya, T. Ono, M. Norimoto, J. Mater. Sci. (2000). doi: 10.1023/A:1004782827844 Google Scholar
  21. 21.
    I. Brémaud, Diversite´ des bois utilise´s ou utilisables en facture d’instruments de musique (Diversity of woods used or usable in musical instruments making). (Ph.D. dissertation, University of Montpellier II, France 2006)Google Scholar
  22. 22.
    Empa Center for X-ray Analytics. http://www.empa.ch/web/empa/center-for-x-ray-analytics. Accessed Jan 2016
  23. 23.
    V. Bucur, Acoustics of Wood (Springer, Berlin, 1987), p. 181Google Scholar
  24. 24.
    F.W.M.R. Schwarze, M. Spycher, S. Fink, New Phytol. 179, 1095–1104 (2008)CrossRefGoogle Scholar
  25. 25.
    J. Vlassenbroeck, B. Masschaele, V. Cnudde, M. Dierick, K. Pieters, L. Van Hoorebeke, P. Jacobs, Octopus 8: A high performance tomographic reconstruction package for X-ray tube and synchrotron micro-CT, in Advances in X-ray Tomography for Geomaterials, eds by J. Desrues, G. Viggiani, P. Bésuelle (ISTE, London, 2010). doi: 10.1002/9780470612187.ch1326.
  26. 26.
    M. Sedighi Gilani, M. Griffa, D. Mannes, E. Lehmann, J. Carmeliet, D. Derome, Int. J. Heat Mass Trans. 55, 6211–6221 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marjan Sedighi Gilani
    • 1
    Email author
  • Johanna Pflaum
    • 2
  • Stefan Hartmann
    • 3
  • Rolf Kaufmann
    • 3
  • Michael Baumgartner
    • 4
  • Francis Willis Mathew Robert Schwarze
    • 1
  1. 1.Applied Wood Material Laboratory(EMPA) Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  2. 2.Albert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany
  3. 3.Center for X-ray Analytics(EMPA) Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  4. 4.Atelier für GeigenbauBaselSwitzerland

Personalised recommendations