Skip to main content
Log in

Photodisruption of a thin membrane near a solid boundary: an in vitro study of laser capsulotomy

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A Nd:YAG laser photodisruption is a well-established tool for intraocular surgery, such as treatment of posterior capsule opacification that affects the visual function. During the intraocular procedure, called laser capsulotomy, the excitation pulse is focused several times just behind the posterior capsule and intraocular lens to create the central opening in the opacified capsule. We built an in vitro experiment to (1) clarify the influence of the distance between the intraocular lens and the posterior capsule on the total pulse energy required for the capsulotomy, and (2) investigate the main mechanisms responsible for the posterior capsule opening. In our in vitro model, different distances between the solid boundary (imitating an intraocular lens) and the membrane (imitating the posterior capsule) simulate different types of posterior capsule opacification. Our results show that procedure efficiency decreases by decreasing distance between the lens and the capsule. We also explain that for smaller distances between the pulse focus and the membrane, plasma and shock wave are responsible for the capsule disruption. Here, a risk of collateral damage significantly increases. On contrary, the membrane and the bubble jet disrupt the membrane, when pulse focus is moved away and the risk of intraocular lens damage decreases. However, the membrane disruption is not very effective, if it is placed near the solid boundary that inhibits the membrane jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Billotte, G. Berdeaux, J. Cataract. Refract. Surg. 30, 2064 (2004)

    Article  Google Scholar 

  2. G. Hawlina, D. Perovšek, B. Drnovšek-Olup, J. Možina, P. Gregorčič, BMC Ophthalmol. 14, 131 (2014)

    Article  Google Scholar 

  3. E.J. Hollick, D.J. Spalton, P.G. Ursell, M.V. Pande, Br. J. Ophthalmol. 82, 1182 (1998)

    Article  Google Scholar 

  4. K. Miyake, I. Ota, S. Ichihashi, S. Miyake, Y. Tanaka, H. Terasaki, J. Cataract Refract. Surg. 24, 1230 (1998)

    Article  Google Scholar 

  5. A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, Ophthalmology 93, 1259 (1986)

    Article  Google Scholar 

  6. A. Vogel, M.R. Capon, M.N. Asiyo-Vogel, R. Birngruber, Invest. Ophthalmol. Vis. Sci. 35, 3032 (1994)

    Google Scholar 

  7. A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

    Article  ADS  Google Scholar 

  8. P. Gregorčič, R. Petkovšek, J. Možina, G. Močnik, Appl. Phys. A 93, 901 (2008)

    ADS  Google Scholar 

  9. A. Vogel, Phys. Med. Biol. 42, 895 (1997)

    Article  Google Scholar 

  10. Y. Tomita, A. Shima, J. Fluid Mech. 169, 535 (1986)

    Article  ADS  Google Scholar 

  11. A. Vogel, W. Lauterborn, R. Timm, J. Fluid Mech. 206, 299 (1989)

    Article  ADS  Google Scholar 

  12. U. Orthaber, R. Petkovšek, J. Schille, L. Hartwig, G. Hawlina, B. Drnovšek-Olup, A. Vrečko, I. Poberaj, Opt. Laser Technol. 64, 94 (2014)

    Article  ADS  Google Scholar 

  13. A. Gomaa, C. Liu, Eur. J. Ophthalmol. 21, 385 (2011)

    Article  Google Scholar 

  14. A. Trinavarat, L. Atchaneeyasakul, S. Udompunturak, J. Cataract Refract. Surg. 27, 775 (2001)

    Article  Google Scholar 

  15. D.S. Aron-Rosa, J.J. Aron, H.C. Cohn, J. Am. Intraocul. Implant. Soc. 10, 35 (1984)

    Article  Google Scholar 

  16. A. Vogel, Optical Breakdown in Water and Ocular Media, and Its Use for Intraocular Photodisruption (Shaker, Aachen, 2001)

    Google Scholar 

  17. P. Ranta, P. Tommila, T. Kivela, J. Cataract. Refract. Surg. 30, 58 (2004)

    Article  Google Scholar 

  18. D.J. Apple, K.D. Solomon, M.R. Tetz, E.I. Assia, E.Y. Holland, U.F. Legler, J.C. Tsai, V.E. Castaneda, J.P. Hoggatt, A.M. Kostick, Surv. Ophthalmol. 37, 73 (1992)

    Article  Google Scholar 

  19. P. Gregorčič, M. Jamšek, M. Lukač, M. Jezeršek, J. LA&HA 2014, 14 (2014)

    Google Scholar 

  20. P. Gregorčič, M. Jezeršek, J. Možina, J. Biomed. Opt. 17, 075006 (2012)

    Google Scholar 

  21. R. Petkovšek, P. Gregorčič, J. Appl. Phys. 102, 044909 (2007)

    Article  ADS  Google Scholar 

  22. G.S. Settles, Schlieren and Shadowgraph Techniques (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  23. A. Vogel, P. Schweiger, A. Frieser, M.N. Asiyo, R. Birngruber, IEEE J. Quantum Electron. 26, 2240 (1990)

    Article  ADS  Google Scholar 

  24. E.A. Brujan, K. Nahen, P. Schmidt, A. Vogel, J. Fluid Mech. 433, 251 (2001)

    Article  ADS  Google Scholar 

  25. E.A. Brujan, K. Nahen, P. Schmidt, A. Vogel, J. Fluid Mech. 433, 283 (2001)

    Article  ADS  Google Scholar 

  26. J.S. Lee, C.Y. Li, Y.C. Lin, S.Y. Chang, K.K. Lin, J. Cataract Refract. Surg. 29, 621 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gregorčič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawlina, G., Drnovšek-Olup, B., Možina, J. et al. Photodisruption of a thin membrane near a solid boundary: an in vitro study of laser capsulotomy. Appl. Phys. A 122, 118 (2016). https://doi.org/10.1007/s00339-016-9648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9648-z

Keywords

Navigation