Compositional and structural properties of pulsed laser-deposited ZnS:Cr films


We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition. The films are studied for solar cell applications, and to obtain a high absorption, a high Cr content (2.0–5.0 at.%) is used. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformly distributed, and that local Cr increases correspond to Zn decreases. The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy showed that the films contain mainly Cr2+ ions. Structural analysis showed that the films are polycrystalline and textured. The films with ~4 % Cr are mainly grown along the hexagonal [001] direction in wurtzite phase. The average lateral grain size decreases with increasing Cr content, and at a given Cr content, increases with increasing growth temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    H. Nelkowski, G. Grebe, IR-luminescence of ZnS:Cr. J. Lumin. 1–2, 88–93 (1970)

    Article  Google Scholar 

  2. 2.

    M. Godlewski, M. Kaminska, The chromium impurity photogeneration transitions in ZnS, ZnSe and ZnTe. J. Phys. C Solid State 13(35), 6537–6546 (1980)

    ADS  Article  Google Scholar 

  3. 3.

    G. Goetz, H.J. Schulz, Influence of the impurity concentration on the microstructure of compound semiconductors—the example of ZnS: Cr optical spectra. Solid State Commun. 84(5), 523–525 (1992)

    ADS  Article  Google Scholar 

  4. 4.

    G. Goetz, H. Zimmermann, H.-J. Schulz, Jahn-Teller interaction at Cr2+(d 4) centres in tetrahedrally coordinated II–VI lattices studied by optical spectroscopy. Z. Phys. B Condens. Matter 91(4), 429–436 (1993)

    ADS  Article  Google Scholar 

  5. 5.

    N.A. Vlasenko, P.F. Oleksenko, Z.L. Denisova, M.O. Mukhlyo, L.I. Veligura, Cr-related energy levels and mechanism of Cr2+ ion photorecharge in ZnS:Cr. Phys. Status Solidi B 245(11), 2550–2557 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    X. Zeng, J. Zhang, F. Huang, Optical and magnetic properties of Cr-doped ZnS nanocrystallites. J. Appl. Phys. 111(12), 123525–7 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    T. Konak, M. Tekavec, V.V. Fedorov, S.B. Mirov, Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II–VI semiconductors. Opt. Mater. Express 3, 777–786 (2013)

    Article  Google Scholar 

  8. 8.

    C. Tablero, Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band. J. Chem. Phys. 123(11), 114709–7 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    A. Luque, A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5014–5017 (1997)

    ADS  Article  Google Scholar 

  10. 10.

    S.B. Mirov, V.V. Fedorov, I.S. Moskalev, D.V. Martyshkin, Recent progress in transition-metal-doped II–VI mid-IR lasers. IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007)

    Article  Google Scholar 

  11. 11.

    N. Vlasenko, P. Oleksenko, M. Mukhlyo, Z. Denisova, L. Veligura, ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism. Ann. Phys. 525(12), 889–905 (2013). cited By 0

    Article  Google Scholar 

  12. 12.

    D.Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Room-temperature ferromagnetism in EDTA capped Cr-doped ZnS nanoparticles. Appl. Phys. A 105(1), 119–124 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    Z. Zhang, J. Li, J. Jian, R. Wu, Y. Sun, S. Wang, Y. Ren, J. Li, Preparation of Cr-doped ZnS nanosheets with room temperature ferromagnetism via a solvothermal route. J. Cryst. Growth 372, 39–42 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    K. Ichino, Y. Morimoto, H. Kobayashi, Molecular beam epitaxy and structural properties of ZnCrS. Phys. Status Solidi C 3(4), 776–779 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    N.A. Vlasenko, P.F. Oleksenko, M.A. Mukhlyo, L.I. Veligura, Changes induced in a ZnS:Cr-based electroluminescent waveguide structure by intrinsic near-infrared laser radiation. Semiconductors 47(8), 1116–1122 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    S. Wang, S.B. Mirov, V.V. Fedorov, R.P. Camata, Synthesis and spectroscopic properties of Cr-doped ZnS crystalline thin films. Proc. SPIE 5332, 13–20 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    H. Kuwamoto, Origin of polytypism in the ZnS structure. J. Mater. Sci. Lett. 4(8), 940–942 (1985)

    Article  Google Scholar 

  18. 18.

    J. Gosk, M.J. Kozielski, Cr doping influence in ZnS single crystals on the complex disordered polytypical structure. Cryst. Res. Technol. 25(4), 415–419 (1990)

    Article  Google Scholar 

  19. 19.

    Z.-J. Xin, R.J. Peaty, H.N. Rutt, R.W. Eason, Epitaxial growth of high-quality ZnS films on sapphire and silicon by pulsed laser deposition. Semicond. Sci. Technol. 14(8), 695–698 (1999)

    ADS  Article  Google Scholar 

  20. 20.

    L.T. Romano, R.D. Bringans, X. Zhou, W.P. Kirk, Interface structure of ZnS/Si(001) and comparison with ZnSe/Si(001) and GaAs/Si(001). Phys. Rev. B 52, 11201–11205 (1995)

    ADS  Article  Google Scholar 

  21. 21.

    X. Zhou, S. Jiang, W.P. Kirk, Epitaxial growth of ZnS on bare and arsenic-passivated vicinal Si(100) surfaces. J. Appl. Phys. 82(5), 2251–2262 (1997)

    ADS  Article  Google Scholar 

  22. 22.

    Y.Z. Yoo, Y. Osaka, T. Fukumura, Z. Jin, M. Kawasaki, H. Koinuma, T. Chikyow, P. Ahmet, A. Setoguchi, S.F. Chichibu, High temperature growth of ZnS films on bare si and transformation of ZnS to ZnO by thermal oxidation. Appl. Phys. Lett. 78(5), 616–618 (2001)

    ADS  Article  Google Scholar 

  23. 23.

    C. Linge, Modeling of the intermediate band tandem solar cell, Master’s thesis, Norwegian University of Science and Technology (2011)

  24. 24.

    I.P. McClean, C.B. Thomas, Photoluminescence study of MBE-grown films on ZnS. Semicond. Sci. Technol. 7(11), 1394–1399 (1992)

    ADS  Article  Google Scholar 

  25. 25.

    M. Nematollahi, X. Yang, L.M.S. Aas, Z. Ghadyani, M. Kildemo, U.J. Gibson, T.W. Reenaas, Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells. Sol. Energy Mater. Sol. Cells 141, 322–330 (2015)

    Article  Google Scholar 

  26. 26.

    X. Yang, M. Nematollahi, U. Gibson, T. Reenaas, Cr-doped ZnS for intermediate band solar cells, in Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, pp. 2494–2497 (2013)

  27. 27.

    M. Nematollahi, X. Yang, U. Gibson, T.W. Reenaas, Pulsed laser ablation and deposition of ZnS:Cr. Thin Solid Films 590, 28–32 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    SIMNRA (Max-Planck-Institut für Plasmaphysik, 2014),

  29. 29.

    J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  Google Scholar 

  30. 30.

    A. Boulle, C. Legrand, R. Guinebretiére, J. Mercurio, A. Dauger, X-ray diffraction line broadening by stacking faults in SrBi2 Nb2 O9/SrTiO3 epitaxial thin films. Thin Solid Films 391(1), 42–46 (2001)

    ADS  Article  Google Scholar 

  31. 31.

    E. Eberg, Å.F. Monsen, T. Tybell, A.T. van Helvoort, R. Holmestad, Comparison of tem specimen preparation of perovskite thin films by tripod polishing and conventional ion milling. J. Electron Microsc. 57(6), 175–179 (2008)

    Article  Google Scholar 

  32. 32.

    M. Eriksson, J. Sainio, J. Lahtinen, Chromium deposition on ordered alumina films: an X-ray photoelectron spectroscopy study of the interaction with oxygen. J. Chem. Phys. 116(9), 3870–3874 (2002)

    ADS  Article  Google Scholar 

  33. 33.

    S.S. Li, Y.M. Hu, Transition from weak ferromagnetism to strong paramagnetism in Zn1−x Cr x O(0 ≤ x ≤ 0.026) thin films. J. Phys. Conf. Ser. 266(1), 012018 (2011)

    ADS  Google Scholar 

  34. 34.

    J. Sainio, M. Aronniemi, O. Pakarinen, K. Kauraala, S. Airaksinen, O. Krause, J. Lahtinen, An XPS study of crox on a thin alumina film and in alumina supported catalysts. Appl. Surf. Sci. 252(4), 1076–1083 (2005)

    ADS  Article  Google Scholar 

  35. 35.

    M.C. Biesinger, C. Brown, J.R. Mycroft, R.D. Davidson, N.S. McIntyre, X-ray photoelectron spectroscopy studies of chromium compounds. Surf. Interface Anal. 36(12), 1550–1563 (2004)

    Article  Google Scholar 

  36. 36.

    M. Aronniemi, J. Sainio, J. Lahtinen, Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surf. Sci. 578(13), 108–123 (2005)

    ADS  Article  Google Scholar 

  37. 37.

    E. Seim, TEM characterization of Cr-doped ZnS thin films for solar cell applications, Master’s thesis, Norwegian University of Science and Technology (2014)

  38. 38.

    E. Spiecker, V. Radmilovic, U. Dahmen, Quantitative TEM analysis of 3-D grain structure in CVD-grown SiC films using double-wedge geometry. Acta Mater. 55(10), 3521–3530 (2007)

    Article  Google Scholar 

Download references


This work is done in part within the Norwegian Center for Solar Cell Technology, a Center for Environment-friendly Energy Research co-sponsored by the Norwegian Research Council and Research and Industry in Norway (Project No. 193829). The authors also acknowledge the Research Council of Norway for financial support via the Nano2021 program (Project No. 203503).

Author information



Corresponding author

Correspondence to Mohammadreza Nematollahi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, M., Yang, X., Seim, E. et al. Compositional and structural properties of pulsed laser-deposited ZnS:Cr films. Appl. Phys. A 122, 84 (2016).

Download citation


  • Rutherford Backscattering Spectroscopy
  • Transmission Electron Microscopy Foil
  • Increase Growth Temperature
  • HAADF Stem Image
  • Intermediate Band Solar Cell