Applied Physics A

, 122:84 | Cite as

Compositional and structural properties of pulsed laser-deposited ZnS:Cr films

  • Mohammadreza Nematollahi
  • Xiaodong Yang
  • Eivind Seim
  • Per Erik Vullum
  • Randi Holmestad
  • Ursula J. Gibson
  • Turid W. Reenaas


We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition. The films are studied for solar cell applications, and to obtain a high absorption, a high Cr content (2.0–5.0 at.%) is used. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformly distributed, and that local Cr increases correspond to Zn decreases. The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy showed that the films contain mainly Cr2+ ions. Structural analysis showed that the films are polycrystalline and textured. The films with ~4 % Cr are mainly grown along the hexagonal [001] direction in wurtzite phase. The average lateral grain size decreases with increasing Cr content, and at a given Cr content, increases with increasing growth temperature.


Rutherford Backscattering Spectroscopy Transmission Electron Microscopy Foil Increase Growth Temperature HAADF Stem Image Intermediate Band Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is done in part within the Norwegian Center for Solar Cell Technology, a Center for Environment-friendly Energy Research co-sponsored by the Norwegian Research Council and Research and Industry in Norway (Project No. 193829). The authors also acknowledge the Research Council of Norway for financial support via the Nano2021 program (Project No. 203503).


  1. 1.
    H. Nelkowski, G. Grebe, IR-luminescence of ZnS:Cr. J. Lumin. 1–2, 88–93 (1970)CrossRefGoogle Scholar
  2. 2.
    M. Godlewski, M. Kaminska, The chromium impurity photogeneration transitions in ZnS, ZnSe and ZnTe. J. Phys. C Solid State 13(35), 6537–6546 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    G. Goetz, H.J. Schulz, Influence of the impurity concentration on the microstructure of compound semiconductors—the example of ZnS: Cr optical spectra. Solid State Commun. 84(5), 523–525 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    G. Goetz, H. Zimmermann, H.-J. Schulz, Jahn-Teller interaction at Cr2+(d 4) centres in tetrahedrally coordinated II–VI lattices studied by optical spectroscopy. Z. Phys. B Condens. Matter 91(4), 429–436 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    N.A. Vlasenko, P.F. Oleksenko, Z.L. Denisova, M.O. Mukhlyo, L.I. Veligura, Cr-related energy levels and mechanism of Cr2+ ion photorecharge in ZnS:Cr. Phys. Status Solidi B 245(11), 2550–2557 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    X. Zeng, J. Zhang, F. Huang, Optical and magnetic properties of Cr-doped ZnS nanocrystallites. J. Appl. Phys. 111(12), 123525–7 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    T. Konak, M. Tekavec, V.V. Fedorov, S.B. Mirov, Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II–VI semiconductors. Opt. Mater. Express 3, 777–786 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Tablero, Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band. J. Chem. Phys. 123(11), 114709–7 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A. Luque, A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5014–5017 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    S.B. Mirov, V.V. Fedorov, I.S. Moskalev, D.V. Martyshkin, Recent progress in transition-metal-doped II–VI mid-IR lasers. IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007)CrossRefGoogle Scholar
  11. 11.
    N. Vlasenko, P. Oleksenko, M. Mukhlyo, Z. Denisova, L. Veligura, ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism. Ann. Phys. 525(12), 889–905 (2013). cited By 0CrossRefGoogle Scholar
  12. 12.
    D.Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Room-temperature ferromagnetism in EDTA capped Cr-doped ZnS nanoparticles. Appl. Phys. A 105(1), 119–124 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Zhang, J. Li, J. Jian, R. Wu, Y. Sun, S. Wang, Y. Ren, J. Li, Preparation of Cr-doped ZnS nanosheets with room temperature ferromagnetism via a solvothermal route. J. Cryst. Growth 372, 39–42 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    K. Ichino, Y. Morimoto, H. Kobayashi, Molecular beam epitaxy and structural properties of ZnCrS. Phys. Status Solidi C 3(4), 776–779 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    N.A. Vlasenko, P.F. Oleksenko, M.A. Mukhlyo, L.I. Veligura, Changes induced in a ZnS:Cr-based electroluminescent waveguide structure by intrinsic near-infrared laser radiation. Semiconductors 47(8), 1116–1122 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Wang, S.B. Mirov, V.V. Fedorov, R.P. Camata, Synthesis and spectroscopic properties of Cr-doped ZnS crystalline thin films. Proc. SPIE 5332, 13–20 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    H. Kuwamoto, Origin of polytypism in the ZnS structure. J. Mater. Sci. Lett. 4(8), 940–942 (1985)CrossRefGoogle Scholar
  18. 18.
    J. Gosk, M.J. Kozielski, Cr doping influence in ZnS single crystals on the complex disordered polytypical structure. Cryst. Res. Technol. 25(4), 415–419 (1990)CrossRefGoogle Scholar
  19. 19.
    Z.-J. Xin, R.J. Peaty, H.N. Rutt, R.W. Eason, Epitaxial growth of high-quality ZnS films on sapphire and silicon by pulsed laser deposition. Semicond. Sci. Technol. 14(8), 695–698 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    L.T. Romano, R.D. Bringans, X. Zhou, W.P. Kirk, Interface structure of ZnS/Si(001) and comparison with ZnSe/Si(001) and GaAs/Si(001). Phys. Rev. B 52, 11201–11205 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    X. Zhou, S. Jiang, W.P. Kirk, Epitaxial growth of ZnS on bare and arsenic-passivated vicinal Si(100) surfaces. J. Appl. Phys. 82(5), 2251–2262 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Y.Z. Yoo, Y. Osaka, T. Fukumura, Z. Jin, M. Kawasaki, H. Koinuma, T. Chikyow, P. Ahmet, A. Setoguchi, S.F. Chichibu, High temperature growth of ZnS films on bare si and transformation of ZnS to ZnO by thermal oxidation. Appl. Phys. Lett. 78(5), 616–618 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    C. Linge, Modeling of the intermediate band tandem solar cell, Master’s thesis, Norwegian University of Science and Technology (2011)Google Scholar
  24. 24.
    I.P. McClean, C.B. Thomas, Photoluminescence study of MBE-grown films on ZnS. Semicond. Sci. Technol. 7(11), 1394–1399 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    M. Nematollahi, X. Yang, L.M.S. Aas, Z. Ghadyani, M. Kildemo, U.J. Gibson, T.W. Reenaas, Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells. Sol. Energy Mater. Sol. Cells 141, 322–330 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Yang, M. Nematollahi, U. Gibson, T. Reenaas, Cr-doped ZnS for intermediate band solar cells, in Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, pp. 2494–2497 (2013)Google Scholar
  27. 27.
    M. Nematollahi, X. Yang, U. Gibson, T.W. Reenaas, Pulsed laser ablation and deposition of ZnS:Cr. Thin Solid Films 590, 28–32 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    SIMNRA (Max-Planck-Institut für Plasmaphysik, 2014),
  29. 29.
    J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)CrossRefGoogle Scholar
  30. 30.
    A. Boulle, C. Legrand, R. Guinebretiére, J. Mercurio, A. Dauger, X-ray diffraction line broadening by stacking faults in SrBi2 Nb2 O9/SrTiO3 epitaxial thin films. Thin Solid Films 391(1), 42–46 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    E. Eberg, Å.F. Monsen, T. Tybell, A.T. van Helvoort, R. Holmestad, Comparison of tem specimen preparation of perovskite thin films by tripod polishing and conventional ion milling. J. Electron Microsc. 57(6), 175–179 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Eriksson, J. Sainio, J. Lahtinen, Chromium deposition on ordered alumina films: an X-ray photoelectron spectroscopy study of the interaction with oxygen. J. Chem. Phys. 116(9), 3870–3874 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    S.S. Li, Y.M. Hu, Transition from weak ferromagnetism to strong paramagnetism in Zn1−xCrxO(0 ≤ x ≤ 0.026) thin films. J. Phys. Conf. Ser. 266(1), 012018 (2011)ADSGoogle Scholar
  34. 34.
    J. Sainio, M. Aronniemi, O. Pakarinen, K. Kauraala, S. Airaksinen, O. Krause, J. Lahtinen, An XPS study of crox on a thin alumina film and in alumina supported catalysts. Appl. Surf. Sci. 252(4), 1076–1083 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    M.C. Biesinger, C. Brown, J.R. Mycroft, R.D. Davidson, N.S. McIntyre, X-ray photoelectron spectroscopy studies of chromium compounds. Surf. Interface Anal. 36(12), 1550–1563 (2004)CrossRefGoogle Scholar
  36. 36.
    M. Aronniemi, J. Sainio, J. Lahtinen, Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surf. Sci. 578(13), 108–123 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    E. Seim, TEM characterization of Cr-doped ZnS thin films for solar cell applications, Master’s thesis, Norwegian University of Science and Technology (2014)Google Scholar
  38. 38.
    E. Spiecker, V. Radmilovic, U. Dahmen, Quantitative TEM analysis of 3-D grain structure in CVD-grown SiC films using double-wedge geometry. Acta Mater. 55(10), 3521–3530 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohammadreza Nematollahi
    • 1
  • Xiaodong Yang
    • 1
  • Eivind Seim
    • 1
  • Per Erik Vullum
    • 1
    • 2
  • Randi Holmestad
    • 1
  • Ursula J. Gibson
    • 1
  • Turid W. Reenaas
    • 1
  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF Materials and ChemistryTrondheimNorway

Personalised recommendations