Applied Physics A

, 123:142 | Cite as

Dual phylogenetic staining protocol for simultaneous analysis of yeast and bacteria in artworks

  • Marina González-Pérez
  • Catarina Brinco
  • Ricardo Vieira
  • Tânia Rosado
  • Guilhem Mauran
  • António Pereira
  • António Candeias
  • Ana Teresa CaldeiraEmail author
Part of the following topical collections:
  1. Innovation in Art Research and Technology


The detection and analysis of metabolically active microorganisms are useful to determine those directly involved in the biodeterioration of cultural heritage (CH). Fluorescence in situ hybridization with oligonucleotide probes targeted at rRNA (RNA-FISH) has demonstrated to be a powerful tool for signaling them. However, more efforts are required for the technique to become a vital tool for the analysis of CH’s microbiological communities. Simultaneous analysis of microorganisms belonging to different kingdoms, by RNA-FISH in-suspension approach, could represent an important progress: it could open the door for the future use of the technique to analyze the microbial communities by flow cytometry, which has shown to be a potent tool in environmental microbiology. Thus, in this work, various already implemented in-suspension RNA-FISH protocols for ex situ analysis of yeast and bacteria were investigated and adapted for allowing the simultaneous detection of these types of microorganisms. A deep investigation of the factors that can affect the results was carried out, focusing particular attention on the selection of the fluorochromes used for labelling the probe set. The resultant protocol, involving the use of EUK516–6-FAM/EUB338–Cy3 probes combination, was validated using artificial consortia and gave positive preliminary results when applied in samples from a real case study: the Paleolithic archaeological site of Escoural Cave (Alentejo, Portugal). This approach represents the first dual-staining RNA-FISH in-suspension protocol developed and applied for the simultaneous investigation of CH biodeteriogenic agents belonging to different kingdoms.


Fluorescence in situ hybridization RNA-FISH Biodeterioration Cultural heritage microbiology Phylogenetic staining 



This work was co-financed by European Union-European Regional Development Fund ALENTEJO 2020 through the project “HIT3CH-HERCULES Interface for Technology Transfer and Teaming in Cultural Heritage” (ALT20-03-0246-FEDER-000004) and by FCT-Fundação para a Ciência e a Tecnologia through the project “MICROTECH-ART-Microorganisms Thriving on and Endamaging Cultural Heritag—an Analytical Rapid Tool-” (PTDC/BBB-IMG/0046/2014). M. González-Pérez acknowledges FCT for the economic support through the post-doctoral grant SFRH/BPD/100754/2014. Authors are also grateful to the Alentejo Regional Directorate for Culture and archaeologist António Carlos Silva for allowing the sampling from Escoural Cave.

Supplementary material

339_2016_725_MOESM1_ESM.pdf (642 kb)
Supplementary material 1 (PDF 641 KB)


  1. 1.
    P. Sanmartín, A. DeAraujo, A. Vasanthakumar, Microb. Ecol. 1 (2016)Google Scholar
  2. 2.
    A. Mihajlovski, D. Seyer, H. Benamara, F. Bousta, P. Di Martino, Ann. Microbiol. 65, 1243 (2015)CrossRefGoogle Scholar
  3. 3.
    J. L. Boutaine, Phys. Technol. Study Art Archaeol. Cult. Herit. 1, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Schabereiter-Gurtner, G. Piñar, W. Lubitz, S. Rölleke, J. Microbiol. Methods 45, 77 (2001)CrossRefGoogle Scholar
  5. 5.
    C. Urzí and P. Albertano, in Methods Enzymol, ed by J. D. Ron (Academic Press, London, 2001), pp. 340–355Google Scholar
  6. 6.
    G. Piñar and W. Lubitz, in http://www.Itam.Cas.Cz/~Arcchip/Ariadne_8.Shtml (2004), p. 12
  7. 7.
    S. Baskar, R. Baskar, L. Mauclaire, J.A. McKenzie, Curr. Sci. 90, 58 (2006)Google Scholar
  8. 8.
    F. Cappitelli, P. Principi, C. Sorlini, Trends Biotechnol 24, 350 (2006)CrossRefGoogle Scholar
  9. 9.
    F. Cappitelli, P. Principi, R. Pedrazzani, L. Toniolo, C. Sorlini, Sci. Total Environ. 385, 172 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Santos, A. Cerrada, S. García, M. San Andrés, C. Abrusci, D. Marquina, Microb. Ecol. 58, 692 (2009)CrossRefGoogle Scholar
  11. 11.
    E. Müller, U. Drewello, R. Drewello, R. Weißmann, S. Wuertz, J. Cult. Herit. 2, 31 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Polo, F. Cappitelli, L. Brusetti, P. Principi, F. Villa, L. Giacomucci, G. Ranalli, C. Sorlini, Microb. Ecol 60, 1 (2010)CrossRefGoogle Scholar
  13. 13.
    D.B. Meisinger, J. Zimmermann, W. Ludwig, K.-H. Schleifer, G. Wanner, M. Schmid, P.C. Bennett, A.S. Engel, N.M. Lee, Environ. Microbiol. 9, 1523 (2007)CrossRefGoogle Scholar
  14. 14.
    K. Sterflinger, M. Hain, Stud. Mycol. 1999, 23 (1999)Google Scholar
  15. 15.
    S. Muller, G. Nebe-von-Caron, FEMS Microbiol. Rev. 34, 554 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Urzì, in Herit. Microbiol. Sci. Microbes, Monum. Marit. Mater, ed by E. May, M. Jones, J. Mitchell (Royal Society of Chemistry (Great Britain), Cambridge, 2008), pp. 143–150Google Scholar
  17. 17.
    K. Sterflinger, W.E. Krumbein, A. Schvviertz, Int. Microbiol. 1, 217 (1998)Google Scholar
  18. 18.
    C. Urzì, F. De Leo, P. Donato, V. La Cono, in Art, Biology, and Conservation: Biodeterioration of Works, ed by R. J. Koestler, M. M. Art (Metropolitan Museum of Art, NY, 2003), pp. 317–325Google Scholar
  19. 19.
    C. Urzì, V. La Cono, E. Stackebrandt, Environ. Microbiol. 6, 678 (2004)CrossRefGoogle Scholar
  20. 20.
    F. Villa, F. Cappitelli, P. Principi, A. Polo, C. Sorlini, Lett. Appl. Microbiol. 48, 234 (2009)CrossRefGoogle Scholar
  21. 21.
    V. La Cono, C. Urzì, J. Microbiol. Methods 55, 65 (2003)CrossRefGoogle Scholar
  22. 22.
    F. De Leo, C. Urzi, Fungi Differ. Substr. 144 (2015)Google Scholar
  23. 23.
    R.I. Amann, L. Krumholz, D.A. Stahl, J Bacteriol. 172, 762 (1990)CrossRefGoogle Scholar
  24. 24.
    C. Urzı̀, F. De Leo, J. Microbiol. Methods 44, 1 (2001)CrossRefGoogle Scholar
  25. 25.
    R. Vieira, P. Nunes, S. Martins, M. González, T. Rosado, A. Pereira, A. Candeias, A. T. Caldeira, in Science, Technology and Cultural Heritage, ed by A. Rogerio-Candelera (Taylor & Francis Group, London, 2014), pp. 257–262Google Scholar
  26. 26.
    R. Vieira, M. González-Pérez, A. Pereira, A. Candeias, A. T. Caldeira, Conserv. Património 23, 71 (2016)CrossRefGoogle Scholar
  27. 27.
    M. González, R. Vieira, P. Nunes, T. Rosado, S. Martins, A. Candeias, A. Pereira, A.T. Caldeira, E-Conserv J. 44 (2014)Google Scholar
  28. 28.
    Y. Williams, S. Byrne, M. Baschir, A. Davies, A. Whelan, Y. Gun’ko, D. Kelleher, Y. Volkov, J. Microsc. 232, 91 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    E. Nettmann, A. Fröhling, K. Heeg, M. Klocke, O. Schlüter, J. Mumme, BMC Microbiol. 13, 278 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Amann, B.M. Fuchs, Nat. Rev. Microbiol. 6, 339 (2008)CrossRefGoogle Scholar
  31. 31.
    D. Greuter, A. Loy, M. Horn, T. Rattei, Nucleic Acids Res 44, D586 (2016)CrossRefGoogle Scholar
  32. 32.
    R.I. Amann, W. Ludwig, K.H. Schleifer, Microbiol. Rev. 59, 143 (1995)Google Scholar
  33. 33.
    G. Mauran, T. Rosado, C. Salvador, N. Schiavon, J. Mirão, A.T. Caldeira, A. Candeias, Int. Biodeterior. Biodegrad. (2016) (in press)Google Scholar
  34. 34.
    T. Bouvier, P.A. Del Giorgio, FEMS Microbiol. Ecol. 44, 3 (2003)CrossRefGoogle Scholar
  35. 35.
    G. Wallner, R. Amann, W. Beisker, Cytometry 14, 136 (1993)CrossRefGoogle Scholar
  36. 36.
    G. Piñar, C. Ramos, S. Rölleke, C. Schabereiter-Gurtner, D. Vybiral, W. Lubitz, E.B.M. Denner, Appl. Environ. Microbiol. 67, 4891 (2001)CrossRefGoogle Scholar
  37. 37.
    C. Urzì, V. La Cono, F. De Leo, P. Donato, Molecular Biology and Cultural Heritage. (Balkema Publ, Lisse, 2003), p. 55)Google Scholar
  38. 38.
    F. dos Santos, O Arqueol. Port 2, 5 (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Marina González-Pérez
    • 1
  • Catarina Brinco
    • 1
  • Ricardo Vieira
    • 1
  • Tânia Rosado
    • 1
  • Guilhem Mauran
    • 1
    • 2
    • 3
  • António Pereira
    • 1
    • 4
  • António Candeias
    • 1
    • 4
  • Ana Teresa Caldeira
    • 1
    • 4
    Email author
  1. 1.HERCULES LaboratoryÉvora UniversityÉvoraPortugal
  2. 2.ARCHMAT Erasmus Mundus Master in Archaeological Materials ScienceÉvora UniversityÉvoraPortugal
  3. 3.Museum National d’Histoire Naturelle, Histoire Naturelle de l’Homme Préhistorique (HNHP)UMR 7194 CNRS-MNHN-UPVD, Sorbonne UniversitéParisFrance
  4. 4.Chemistry Department, School of Sciences and TechnologyÉvora UniversityÉvoraPortugal

Personalised recommendations