Skip to main content
Log in

Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, MgFe2O4 nanopowders were synthesized through two different methods, sol–gel method (SG) and modified sol–gel with Ammonia (MSG-A). The influence of synthesis route was investigated in terms of phase stability, pores size and surface area, magnetic properties and uptake of Ni and Cd metals from aqueous solution. Rietveld refinements of x-ray diffraction patterns confirmed the formation of single spinel phase for SG sample, while minor impurity was detected for SGM-A sample (few amount of MgO). The crystallite size was found to be sensitive to the preparation method; it ranges from 4 nm for SG to 15 nm for MSG-A. Magnetization experiment at room temperature showed ferromagnetic behavior with a saturation magnetization (M s) ranging from 5.39 emu/g for SG to 9.93 emu/g for MSG-A. Preliminary results showed that SG and MSG-A samples are efficient adsorbent for Ni and Cd metal ions from aqueous solution. Maximum quantity of 62.67 and 61.2 mg of Ni(II) and 36.49 and 32.84 mg of Cd(II) was adsorbed per gram of MgFe2O4 synthesized by SG and MSG-A, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.P. Lingamdinne, Y. Chang, J. Yang, J. Singh, E. Choi, M. Shiratani, J.R. Koduru, P. Attri, Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74–84 (2017)

    Article  Google Scholar 

  2. T. Madrakian, A. Afkhami, B. Zadpour, M. Ahmadi, New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. J. Ind. Eng. Chem. 21, 1160–1166 (2015)

    Article  Google Scholar 

  3. W. Tang, Y. Su, Q. Li, S. Gao, J. Shang, Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res. 47, 3624–3634 (2013)

    Article  Google Scholar 

  4. J. Hu, I.M.C. Lo, G. Chen, Comparative study of various magnetic nanoparticles for Cr(VI) removal. Sep. Purif. Technol. 56, 249–256 (2007)

    Article  Google Scholar 

  5. L. Zhao, X. Li, Q. Zhao, Z. Qu, D. Yuan, S. Liu, Xi Hu, G. Chen, Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal. J. Hazard. Mater. 184, 704–709 (2010)

    Article  Google Scholar 

  6. D. Chen, Y. Zhang, C. Tu, Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave-assisted ball milling. Mater. Lett. 82, 10–12 (2012)

    Article  Google Scholar 

  7. S. Maensiri, M. Sangmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4, 221–228 (2009)

    Article  ADS  Google Scholar 

  8. J. Fu, J. Zhang, C. Zhao, Y. Peng, X. Li, Y. He, Z. Zhang, X. Pan, N.J. Mellors, E. Xie, Solvent effect on electrospinning of nanotubes: the case of magnesium ferrite. J. Alloys Compd. 577, 97–102 (2013)

    Article  Google Scholar 

  9. M.G. Naseri, M.H.M. Ara, E.B. Saion, A. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)

    Article  ADS  Google Scholar 

  10. Y. Shen, Q. Zhao, X. Li, Y. Hou, G. Chen, Surface photovoltage property of magnesium ferrite/hematite heterostructured hollow nanospheres prepared with one-pot strategy. Colloids Surf. A: physicochem. Eng. Asp. 403, 35–40 (2012)

    Article  Google Scholar 

  11. R. Ali, M.A. Khan, A. Mahmood, A.H. Chughtai, A. Sultan, M. Shahid, M. Ishaq, M.F. Warsi, Structural, magnetic and dielectric behavior of Mg1−x Ca x Ni y Fe2−y O4 nano-ferrites synthesized by the micro-emulsion method. Ceram. Int. 40, 3841–3846 (2014)

    Article  Google Scholar 

  12. T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite. Ceram. Int. 36, 275–281 (2010)

    Article  Google Scholar 

  13. G. Ferk, M. Drofenik, D. Lisjak, A. Hamler, Z. Jaglič, D. Makovec, Synthesis and characterization of Mg1−x Fe2−2x Ti x O4 nanoparticles with an adjustable Curie point. J. Magn. Magn. Mater. 350, 124–128 (2014)

    Article  ADS  Google Scholar 

  14. B.C. Lippens, J.H. De Boer, Pore systems in catalysts.V. the t-method. J. Catal. 4, 319–323 (1965)

    Article  Google Scholar 

  15. E.P. Barrett, L.J. Joyner, P.H. Halenda, The determination of pore volume and area distribution on porous solids I: computation from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  Google Scholar 

  16. R. Tholkappiyan, K. Vishista, Combustion synthesis of Mg–Er ferrite nanoparticles: cation distribution and structural, optical, and magnetic properties. Mater. Sci. Semicond. Process. 40, 631–642 (2015)

    Article  Google Scholar 

  17. M. Sheykhan, H. Mohammadnejad, J. Akbari, A. Heydari, Superparamagnetic magnesium ferrite nanoparticles: a magnetically reusable and clean heterogeneous catalyst. Tetrahedron Lett. 53, 2959–2964 (2012)

    Article  Google Scholar 

  18. L. Khanna, N.K. Verma, Size-dependent magnetic properties of calcium ferrite nanoparticles. J. Magn. Magn. Mater. 336, 1–7 (2013)

    Article  ADS  Google Scholar 

  19. J. Wang, A. Sugawara-Narutaki, M. Fukao, T. Yokoi, A. Shimojima, T. Okubo, Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl. Mater. Interfaces 3, 1538–1544 (2011)

    Article  Google Scholar 

  20. H. Yuan, L. Zhang, M. Xu, X. Du, Effect of sol pH on microstructures, optical and magnetic properties of (Co, Fe)-codoped ZnO films synthesized by sol–gel method. J. Alloy. Compd. 651, 571–577 (2015)

    Article  Google Scholar 

  21. G.R. Kumar, K.V. Kumar, Y.C. Venudhar, Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol–gel method. Mater. Sci. Appl. 3, 87–91 (2012)

    Google Scholar 

  22. C.P. Fernández, F.L. Zabotto, D. Garcia, R.H.G.A. Kiminami, In situ sol–gel co-synthesis under controlled pH and microwave sintering of PZT/CoFe2O4 magnetoelectric composite ceramics. Ceram. Int. 42, 3239–3249 (2016)

    Article  Google Scholar 

  23. L.P. Singh, S.K. Agarwal, S.K. Bhattacharyya, U. Sharma, S. Ahalawat, Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. Nanotechnol. 1, 44–51 (2011)

    Google Scholar 

  24. S.K. Chawla, S.S. Meena, P. Kaur, R.K. Mudsainiyan, S.M. Yusuf, Effect of site preferences on structural and magnetic switching properties of CO–Zr doped strontium hexaferrite SrCoxZrxFe(12−2x)O19. J. Magn. Magn. Mater. 378, 84–91 (2015)

    Article  ADS  Google Scholar 

  25. M.V. Chaudhari, S.E. Shirsath, A.B. Kadam, R.H. Kadam, S.B. Shelke, D.R. Mane, Site occupancies of Co–Mg–Cr–Fe ions and their impact on the properties of Co0.5Mg0.5Cr x Fe2−x O4. J. Alloy. Compd. 552, 443–450 (2013)

    Article  Google Scholar 

  26. Ö. Altıntaş Yıldırım, C. Durucan, Room temperature synthesis of Cuincorporated ZnO nanoparticles with room temperature ferromagnetic activity: structural, optical and magnetic characterization, Ceramics International (2015), http://dx.doi.org/10.1016/j.ceramint.2015.10.113

  27. Q.Q. Miao, Y.M. Tang, J. Xu, X.P. Liu, L. Xiao, Q.H. Chen, Activated carbon prepared from soybean straw for phenol adsorption. J. Taiwan Inst. Chem. Eng. 44(3), 458–465 (2013)

    Article  Google Scholar 

  28. M. Kaur, N. Kaur, K. Jeet, P. Kaur, MgFe2O4 nanoparticles loaded on activated charcoal for effective removal of Cr(VI)–A novel approach. Ceram. Int. 41, 13739–13750 (2015)

    Article  Google Scholar 

  29. O.M. Lemine, I. Ghiloufi, M. Bououdina, L. Khezami, M. Ould, M.O. M’hamed, A.T. Hassan, Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution. J. Alloys Compd. 588, 592–595 (2014)

    Article  Google Scholar 

  30. J. Hu, G. Chen, I.M.C. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng. 132(7), 709–715 (2006)

    Article  Google Scholar 

  31. C. Zhou, T. Li, J. Liu, J. Wang, G. Liu, Synthesis, characterization and aging study of kaolinite-supported zero-valent iron nanoparticles and its application for Ni(II) adsorption. Mater. Res. Bull. 60, 421–432 (2014)

    Article  Google Scholar 

  32. C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928 (2009)

    Article  Google Scholar 

  33. T.A. Khan, S.A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J. Mol. Liq. 202, 165–175 (2015)

    Article  Google Scholar 

  34. D.K.V. Ramana, J.S. Yu, K. Seshaiah, Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu(II) and Cd(II) from water: surface, kinetic, equilibrium, and thermal adsorption properties. Chem. Eng. J. 223, 806–815 (2013)

    Article  Google Scholar 

  35. J. Gong, L. Chen, G. Zeng, F. Long, J. Deng, Q. Niu, X. He, Shellac-coated iron oxide nanoparticles for removal of cadmium(II) ions from aqueous solution. J. Environ. Sci. 7, 1165–1173 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Al-Najar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Najar, B., Khezami, L., Judith Vijaya, J. et al. Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders. Appl. Phys. A 123, 100 (2017). https://doi.org/10.1007/s00339-016-0710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0710-7

Keywords

Navigation