Advertisement

Applied Physics A

, 123:58 | Cite as

Electrically and magnetically resonant dc-SQUID metamaterials

  • O. V. Shramkova
  • N. Lazarides
  • G. P. Tsironis
  • A. V. Ustinov
Article
  • 181 Downloads
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics

Abstract

We propose a superconducting metamaterial design consisting of meta-atoms which are each composed of a direct current superconducting quantum interference device and a superconducting rod. This design provides negative refraction index behavior for a wide range of structure parameters.

Keywords

Resonant Frequency Josephson Junction Mutual Inductance Relative Magnetic Permeability Squid Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research work was partially supported by the European Union Seventh Framework Program (FP7-REGPOT-2012-2013-1) under Grant Agreement No. 316165. Partial support by the Ministry of Education and Science of Russian Federation in the framework of Increase Competitiveness Program of the NUST MISIS (Contracts No. K2-2015-002, K2-2015-007 and K2-2016-051) is gratefully acknowledged.

References

  1. 1.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    N. Garcia, M. Nieto-Vesperinas, Is there an experimental verification of a negative index of refraction yet? Opt. Lett. 27, 885 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    M. Ricci, N. Orloff, S.M. Anlage, Superconducting metamaterials. Appl. Phys. Lett. 87, 034102 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Anlage, The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    N. Lazarides, G.P. Tsironis, Rf superconducting quantum interference device metamaterials. Appl. Phys. Lett. 16, 163501 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    C.G. Du, H.Y. Chen, S.Q. Li, Quantum left-handed metamaterial from superconducting quantum-interference devices. Phys. Rev. B 74, 113105 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    C.G. Du, H.Y. Chen, S.Q. Li, Stable and bistable SQUID metamaterials. J. Phys.: Condens. Matter 20, 345220 (2008)Google Scholar
  11. 11.
    A.I. Maimistov, I.R. Gabitov, Nonlinear response of a thin metamaterial film containing Josephson junctions. Opt. Commun. 283, 1633–1639 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    N. Lazarides, G.P. Tsironis, Multistability and selforganization in disordered SQUID metamaterials. Supercond. Sci. Technol. 26, 084006 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, A one-dimensional tunable magnetic metamaterials. Opt. Express 21, 22540–22548 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P. Jung, S. Butz, S.V. Shitov, A.V. Ustinov, Low-loss tunable metamaterials using superconducting circuits with Josephson junctions. Appl. Phys. Lett. 102, 062601 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, Realization and modeling of metamaterials made of rf superconducting quantum-interference devices. Phys. Rev. X 3, 041029 (2013)Google Scholar
  16. 16.
    S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Protecting SQUID metamaterials against stray magnetic fields. Supercond. Sci. Technol. 26, 094003 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppakangas, V.P. Koshelets, A.V. Ustinov, Multistability and switching in a superconducting metamaterials. Nat. Commun. 5, 4730 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Kobayashi, M. Yoshizawa, Y. Uchiyama, Wide dynamic range analog FLL system using high-Te SQUID for biomagnetic measurements. IEEE Trans. Magn. 47, 2871–2873 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    T. Oida, M. Tsuchida, T. Kobayashi, Direct detection of magnetic resonance signals in ultra-low field MRI using optically pumped atomic magnetometer with ferrite shields: magnetic field analysis and simulation studies. IEEE Trans. Magn. 48, 2877–2880 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    R.R.A. Syms, E. Shamonina, V. Kalinin, L. Solymar, A theory of metamaterials based on periodically loaded transmission lines: interaction between magnetoinductive and electromagnetic waves. J. Appl. Phys. 97, 064909 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • O. V. Shramkova
    • 1
  • N. Lazarides
    • 1
    • 2
    • 3
  • G. P. Tsironis
    • 1
    • 2
    • 3
  • A. V. Ustinov
    • 2
    • 4
  1. 1.Crete Center for Quantum Complexity and NanotechnologyUniversity of CreteHeraklionGreece
  2. 2.National University of Science and Technology, MISiSMoscowRussia
  3. 3.Institute of Electronic Structure and LaserFoundation for Research and Technology–HellasHeraklionGreece
  4. 4.Physikalisches InstitutKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations