Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications


A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    M.A. Wan Nordin, M.T. Islam, N. Misran, A compact wideband coplanar waveguide fed metamaterial-inspired patch antenna for wireless application. Appl. Phys. A 109(4), 961–965 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    A. Sarkhel, D. Mitra, S.R.B. Chaudhuri, A compact metamaterial with multi-band negative-index characteristics. Appl. Phys. A 122(4), 1–10 (2016)

    Article  Google Scholar 

  3. 3.

    S.A. Pope, Double negative elastic metamaterial design through electrical–mechanical circuit analogies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(7), 1467–1474 (2013)

    Article  Google Scholar 

  4. 4.

    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968)

    ADS  Article  Google Scholar 

  5. 5.

    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    J.C. Myers, P. Chahal, E. Rothwell, L. Kempel, A multilayered metamaterial-inspired miniaturized dynamically tunable antenna. IEEE Trans. Antennas Propag. 63(4), 1546–1553 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    S.N. Burokur, A.C. Lepage, S. Varault, X. Begaud, G.P. Piau, A. de Lustrac, Low-profile metamaterial-based L-band antennas. Appl. Phys. A 122(4), 1–7 (2016)

    Article  Google Scholar 

  8. 8.

    P. Jin, R.W. Ziolkowski, Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements. IEEE Trans. Antennas Propag. 58(2), 318–327 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    C.A. Balanis, Antenna Theory: Analysis And Design (Wiley, Hoboken, 2005)

    Google Scholar 

  10. 10.

    O.S. Kim, O. Breinbjerg, Miniaturised self-resonant split-ring resonator antenna. Electron. Lett. 45(4), 196–197 (2009)

    Article  Google Scholar 

  11. 11.

    Yuandan Dong, Tatsuo Itoh, Metamaterial-based antennas. Proc. IEEE 100(7), 2271–2285 (2012)

    Article  Google Scholar 

  12. 12.

    M.M. Islam, M.T. Islam, M. Samsuzzaman, M.R.I. Faruque, N. Misran, M.F. Mansor, A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials 8(2), 392–407 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    K. Li, C. Zhu, L. Li, Y.M. Cai, C.H. Liang, Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antennas Wirel. Propag. Lett. 12, 678 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    J.P. Chen, P. Hsu, A compact strip dipole coupled split-ring resonator antenna for RFID tags. IEEE Trans. Antennas Propag. 61(11), 5372–5376 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    X.H. Song, L.L. Chen, C.H. Wu, Y.N. Yuan, Study on an SRR-shaped left-handed material patch antenna. J. Opt. 13(3), 35402 (2011)

    Article  Google Scholar 

  16. 16.

    D.R. Jackson, N.G. Alexopoulos, Communications: simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch. IEEE Trans. Antennas Propag. 39(3), 407–410 (1991)

    ADS  Article  Google Scholar 

  17. 17.

    G.S. Smith, Efficiency of electrically small antennas combined with matching networks. IEEE Trans. Antennas Propag. 25(3), 369–373 (1977)

    ADS  Article  Google Scholar 

  18. 18.

    A. Galehdar, D.V. Thiel, S.G. O’Keefe, Antenna efficiency calculations for electrically small, RFID antennas. IEEE Antennas Wirel. Propag. Lett. 6, 156–159 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    A. Presse, A.C. Tarot, Miniaturized bendable 400 MHz artificial magnetic conductor. Appl. Phys. A 122(4), 1–5 (2016)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohd Faizal Jamlos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alqadami, A.S.M., Jamlos, M.F., Soh, P.J. et al. Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications. Appl. Phys. A 123, 22 (2017).

Download citation


  • Patch Antenna
  • Radiation Efficiency
  • Negative Refractive Index
  • Negative Permittivity
  • Unit Cell Structure