Skip to main content
Log in

Viability assessment of bacteria using long-range surface plasmon waveguide biosensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate that long-range surface plasmon waveguide biosensors are useful to monitor the quiver of immobilized live bacteria in buffer and in human urine. First, the biosensor captures bacteria selectively, based on gram, using antibodies against gram adsorbed on the surface of the waveguide through Protein G coupling. Then, analysis of the noise present on the optical output signal reveals quiver of bacteria immobilized on the waveguide. Live bacteria produce a noisy signature compared to baseline levels. The standard deviation over time of the optical power output from the biosensor increased by factors of 3–60 over that of the baseline level for Staphylococcus epidermidis and Escherichia coli immobilized selectively on waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data originate from Fig. 3a of [12]

Fig. 4

Data originate from Fig. 4 of [12]

Fig. 5

Data originate from Fig. 5 of [12]

Similar content being viewed by others

References

  1. G. Schmiemann, E. Kniehl, K. Gebhardt, M. Matejczyk, E. Hummers-Pradier, The diagnosis of urinary tract infection: a systematic review. Dtsch. Arztebl. Int. 107, 361–367 (2010)

    Google Scholar 

  2. J.A. Simerville, W.C. Maxted, J.J. Pahira, Urinalysis: a comprehensive review. Am. Fam. Phys. 71, 1153–1162 (2005)

    Google Scholar 

  3. M.A. Broeren, S. Bahceci, H.L. Vader, N.L. Arents, Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J. Clin. Microbiol. 49, 1025–1029 (2011)

    Article  Google Scholar 

  4. M. Marschal, M. Wienke, S. Hoering, I.B. Autenrieth, J.-S. Frick, Evaluation of 3 different rapid automated systems for diagnosis of urinary tract infection. Diagn. Microbiol. Infect. Dis. 72, 125–130 (2012)

    Article  Google Scholar 

  5. J. Wang, Y. Zhang, D. Xu, W. Shao, Y. Lu, Evaluation of the Sysmex UF-1000i for the diagnosis of urinary tract infection. Am. J. Clin. Pathol. 133, 577–582 (2010)

    Article  Google Scholar 

  6. M.A. Van Dilla, R.G. Langlois, D. Pinkel et al., Bacterial characterization by flow cytometry. Science 220, 620–622 (1983)

    Article  ADS  Google Scholar 

  7. O. Krupin, H. Asiri, C. Wang, R.N. Tait, P. Berini, Biosensing using straight long-range surface plasmon waveguides. Opt. Express 21, 698–709 (2013)

    Article  ADS  Google Scholar 

  8. O. Krupin, C. Wang, P. Berini, Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides. Biosens. Bioelectr. 53, 117–122 (2014)

    Article  Google Scholar 

  9. W.R. Wong, O. Krupin, S.D. Sekaran, F.R.M. Adikan, P. Berini, Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides. Anal. Chem. 86, 1735–1743 (2014)

    Article  Google Scholar 

  10. W.R. Wong, S.D. Sekaran, F.R.M. Adikan, P. Berini, Detection of dengue NS1 antigen using long-range surface plasmon waveguides. Biosens. Bioelectr. 78, 132–139 (2016)

    Article  Google Scholar 

  11. O. Krupin, C. Wang, P. Berini, Detection of leukemia markers using long-range surface plasmon waveguides functionalized with protein G. Lab Chip 15, 4156–4165 (2015)

    Article  Google Scholar 

  12. P. Béland, O. Krupin, P. Berini, Selective detection of bacteria in urine with a long-range surface plasmon waveguide biosensor. Biomed. Opt. Expr. 6, 2908–2922 (2015)

    Article  Google Scholar 

  13. B. Liedberg, C. Nylander, I. Lundstrom, Surface plasmon resonance for gas detection and biosensing. Sens. Act. 4, 299–304 (1983)

    Article  Google Scholar 

  14. P.M. Fratamico, T.R. Strobaugh, M.B. Medina, A.G. Gehring, Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnol. Technol. 12, 571–576 (1998)

    Article  Google Scholar 

  15. Ö. Torun, İ.H. Boyac, E. Temür, U. Tamer, Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosens. Bioelectr. 37, 53–60 (2012)

    Article  Google Scholar 

  16. M. Vala, S. Etheridge, J. Roach, J. Homola, Long-range surface plasmons for sensitive detection of bacterial analytes. Sens. Act. B 139, 59–63 (2009)

    Article  Google Scholar 

  17. V. Chabot, Y. Miron, M. Grandbois, P.G. Charette, Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sens. Act. B 174, 94–101 (2012)

    Article  Google Scholar 

  18. ethics@uottawa.ca, Bureau d’éthique et d’intégrité à la recherche, 75 Ave. Laurier Est, Université d`Ottawa, K1 N 6N5, numéro de dossier H06–14–01, 23 juin 2014 (personal communication, 2014)

  19. C. Chiu, E. Lisicka-Skrzek, R.N. Tait, P. Berini, Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels. J. Vac. Sci. Technol. B 28, 729–735 (2010)

    Article  Google Scholar 

  20. Z. Suo, R. Avci, X. Yang, D.W. Pascual, Efficient immobilization and patterning of live bacterial cells. Langmuir 24, 4161–4167 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Ontario Centres of Excellence (OCE) for funding this work under project number 21107. We are grateful to Canadian Blood Services (Sandra Ramirez, sandra.ramirez@blood.ca) for donating two bacteria strains: Escherichia coli (E. coli) XL1 Blue and Staphylococcus epidermidis (S. epi) ATCC 12228. We are grateful to Oleksiy Krupin for assistance with the application of the surface chemistries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Berini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 9863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béland, P., Berini, P. Viability assessment of bacteria using long-range surface plasmon waveguide biosensors. Appl. Phys. A 123, 31 (2017). https://doi.org/10.1007/s00339-016-0625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0625-3

Keywords

Navigation