Advertisement

Applied Physics A

, 123:87 | Cite as

Low-SAR metamaterial-inspired printed monopole antenna

  • M. I. HossainEmail author
  • M. R. I. Faruque
  • M. T. Islam
  • M. T. Ali
Article
Part of the following topical collections:
  1. Advanced Metamaterials and Nanophotonics

Abstract

In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.

Keywords

Human Head Specific Absorption Rate Perfect Electric Conducting Impedance Bandwidth Artificial Magnetic Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Kheifets, Science, uncertainty and policy for power and mobile frequency EMF, in Bioelectromagnetics Current Concepts, ed. by S.N. Ayrapetyan, M.S. Markov (Springer, Netherlands, 2006), pp. 323–330Google Scholar
  2. 2.
    L. Hardell, M. Carlberg, Mobile phones, cordless phones and the risk for brain tumours. Int. J. Oncol. 35(1), 5–17 (2009)CrossRefGoogle Scholar
  3. 3.
    WHO: Cell phone use can increase possible cancer risk. http://www.cnn.com/2011/HEALTH/05/31/who.cell.phones/index.html. Accessed 25 Oct 2014
  4. 4.
    I. W. G. on the E. of C. R. to Humans, W. H. Organization, I. A. for R. on Cancer, Non-ionizing radiation: static and extremely low-frequency (ELF) electric and magnetic fields (World Health Organization, Geneva, France, 2002)Google Scholar
  5. 5.
    M.I. Hossain, R.I.F. Mohammad, M.T. Islam, N.H.M. Hanafi, Application of auxiliary antenna elements for SAR reduction in the human head. Adv. Mater. Res. 974, 288–292 (2014)CrossRefGoogle Scholar
  6. 6.
    F. C. Commission et al., in Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields. Washington, DC: FCC. Tech. Rep. Suppl. C to OET Bulletin 65, 2001Google Scholar
  7. 7.
    Q. Guo, R. Mittra, F. Lei, Z. Li, J. Ju, J. Byun, Interaction between internal antenna and external antenna of mobile phone and hand effect. IEEE Trans. Antennas Propag. 61(2), 862–870 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    L.K. Ragha, Bhatia, Evaluation of SAR reduction for mobile phone using RF shield. Int. J. Recent Trends Eng. Technol. 2(5), 58–62 (2009)Google Scholar
  9. 9.
    W. Jianqing, O. Fujiwara, Reduction of electromagnetic absorption in the human head for portable telephones by a ferrite sheet attachment. IEICE Trans. Commun. 80(12), 1810–1815 (1997)Google Scholar
  10. 10.
    M.I. Kitra, C.J. Panagamuwa, P. McEvoy, J.C. Vardaxoglou, J.R. James, Low SAR ferrite handset antenna design. IEEE Trans. Antennas Propag. 55(4), 1155–1164 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    K. Noguchi, N. Goto, M. Hirose, U.N.O. Toru, Y. Kamimura, Directional antennas for portable telephones. IEICE Trans. Commun. 79(9), 1234–1241 (1996)Google Scholar
  12. 12.
    M. Bank, B. Levin, The development of a cellular phone antenna with small irradiation of human-organism tissues. IEEE Antennas Propag. Mag. 49(4), 65–73 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    S.I. Kwak, D.U. Sim, J.H. Kwon, H.D. Choi, Experimental tests of SAR reduction on mobile phone using EBG structures. Electron. Lett. 44(9), 568–570 (2008)CrossRefGoogle Scholar
  14. 14.
    R. Ikeuchi, K.H. Chan, A. Hirata, SAR and radiation characteristics of a dipole antenna above differentfinite EBG substratesin the presence of a realistichead model in the 3.5 GHz band. Prog. Electromagn. Res. B 44, 53–70 (2012)CrossRefGoogle Scholar
  15. 15.
    M.R.I. Faruque, M.T. Islam, M.A.M. Ali, A new design of metamaterials for SAR reduction. Meas. Sci. Rev. 13(2), 70–74 (2013)CrossRefGoogle Scholar
  16. 16.
    J.-N. Hwang, F.-C. Chen, Reduction of the peak SAR in the human head with metamaterials. IEEE Trans. Antennas Propag. 54(12), 3763–3770 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    G. Singh, Double negative left-handed metamaterials for miniaturization of rectangular microstrip antenna, J. Electromagn. Anal. Appl. 2(6), 347–351 (2010)Google Scholar
  18. 18.
    M.B. Manapati, R.S. Kshetrimayum, SAR reduction in human head from mobile phone radiation using single negative metamaterials. J. Electromagn. Waves Appl. 23(10), 1385–1395 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Fallah, A. A. Heydari, A. R. Mallahzadeh, and F. H. Kashani, Design and SAR Reduction of the Vest Antenna using Metamaterial for Broadband Applications, in ACES 26 (2), 2011Google Scholar
  20. 20.
    S. Kahng, K. Kahng, I. Yang, T. Park, A metamaterial-based handset antenna with the SAR reduction. J. Electr. Eng. Technol. 9(2), 622–627 (2014)CrossRefGoogle Scholar
  21. 21.
    M.R.I. Faruque, M.T. Islam, Design of miniaturized double-negative material for specific absorption rate reduction in human head. PLoS ONE 9(10), e109947 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M.I. Hossain, M.R.I. Faruque, M.T. Islam, Design and analysis of metamaterial inspired low SAR PIFA for mobile phone. Int. J. Appl. Electromagn. Mech. 48(4), 459–467 (2015)CrossRefGoogle Scholar
  23. 23.
    M.I. Hossain, M.R.I. Faruque, M.T. Islam, M.H. Ullah, A new wide-band double-negative metamaterial for C- and S-band applications. Materials 8(1), 57–71 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Szabo, G.-H. Park, R. Hedge, E.-P. Li, A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans. Microw. Theory Tech. 58(10), 2646–2653 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Latrach, H. Rmili, C. Sabatier, E. Seguenot, S. Toutain, Design of a new type of metamaterial radome for low frequencies. Microw. Opt. Technol. Lett. 52(5), 1119–1123 (2010)CrossRefGoogle Scholar
  26. 26.
    IEEE Recommended practice for determining the peak Spatial-Average Specific Absorption Rate (SAR) in the human head from wireless communications devices: measurement techniques, in IEEE Std 1528–2013 (Revision of IEEE Std 1528–2003), pp. 1–246 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. I. Hossain
    • 1
    Email author
  • M. R. I. Faruque
    • 1
  • M. T. Islam
    • 2
  • M. T. Ali
    • 3
  1. 1.Space Science CenterUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of Electrical, Electronic, and System EngineeringUniversiti Kebangssan MalaysiaBangiMalaysia
  3. 3.Centre for Communication Eng. StudiesUniversiti Teknologi MaraShah AlamMalaysia

Personalised recommendations