Skip to main content
Log in

Low-temperature synthesis of MgB2 via powder metallurgy processing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ball-milled Mg/B2O3 powder blends reveal interpenetrating layers of deformed magnesium and boron oxide grains that are increasingly refined with increasing milling time. Boron oxide is reduced by Mg and MgO thus formed reacts with the remaining B2O3 to produce Mg3(BO3)2 during ball milling for 30 min. Both B2O3 and Mg3(BO3)2 react with Mg to produce MgB2 upon further ball milling. An annealing treatment can be employed when ball milling is performed for less than 1 h as thermal exposure of the ball-milled Mg/B2O3 powder blends also leads to the formation of MgB2. The above reactions take place between 500 and 700 °C when the Mg/B2O3 powder blend is ball milled for 30 min, and between 450 and 550 °C, after ball milling for 1 h. This is a very attractive route owing to processing temperatures where the volatility of Mg is no longer a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.E. Jones, R.E. Marsh, The preparation and structure of magnesium boride. J. Am. Chem. Soc. 76, 1434–1436 (1954)

    Article  Google Scholar 

  2. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  3. K. Vinod, R.G. Abhilash Kumar, U. Syamaprasad, Prospects for MgB2 superconductors for magnet application. Supercond. Sci. Technol. 20, R1–R13 (2007). doi:10.1088/0953-2048/20/1/R01

    Article  Google Scholar 

  4. P.C. Canfield, D.K. Finnemore, S.L. Budko, J.E. Ostenson, G. Lapertot, C.E. Cunningham, C. Petrovic, Superconductivity in dense MgB2 wires. Phys. Rev. Lett. 86, 2423–2426 (2001)

    Article  ADS  Google Scholar 

  5. G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, A.S. Siri, M.R. Cimberle, Large transport critical currents in unsintered. MgB2 superconducting tapes. Appl. Phys. Lett. 79, 230–232 (2001)

    Article  ADS  Google Scholar 

  6. C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  ADS  Google Scholar 

  7. Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, K. Togano, H. Kito, H. Ihara, Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering. Appl. Phys. Lett. 78, 2914–2916 (2001)

    Article  ADS  Google Scholar 

  8. T. Machi, S. Shimura, N. Koshizuka, M. Murakami, Fabrication of MgB2 superconducting wire by in situ PIT method. Physica C 392–396, 1039–1042 (2003)

    Article  Google Scholar 

  9. A. Serquis, Y.T. Zhu, E.J. Peterson, J.Y. Coulter, D.E. Peterson, F.M. Mueller, Effect of lattice strain and defects on the superconductivity of MgB2. Appl. Phys. Lett. 79, 4399–4401 (2001)

    Article  ADS  Google Scholar 

  10. Y.Y. Wu, B. Messer, P.D. Yang, Superconducting MgB2 nanowires. Adv. Mater. 13, 1487–1489 (2001)

    Article  Google Scholar 

  11. S. Jin, H. Mavoori, C. Bower, R.B. van Dover, High critical currents in iron-clad superconducting MgB2 wires. Nature 411, 563–565 (2001)

    Article  ADS  Google Scholar 

  12. A. Yamamoto, J.I. Shimoyama, S. Ueda, Y. Katsura, S. Hori, K. Kishio, Synthesis of high J c MgB2 bulks with high reproducibility by a modified powder-in-tube method. Supercond. Sci. Technol. 17, 921–925 (2004)

    Article  ADS  Google Scholar 

  13. S.D. Bu, D.M. Kim, J.H. Choi, J. Giencke, E.E. Hellstrom, D.C. Larbalestier, S. Patnaik, L. Cooley, C.B. Eom, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, Synthesis and properties of c-axis oriented epitaxial MgB2 thin films. Appl. Phys. Lett. 81, 1851–1853 (2002)

    Article  ADS  Google Scholar 

  14. I. Duz, S.B. Guner, O. Erdem et al., Comparison of levitation forces of bulk MgB2 superconductors produced by nano boron and carbon-doped nano boron. Supercond. Nov. Magn. 27, 2241 (2014)

    Article  Google Scholar 

  15. R.A. Varin, Ch. Chiu, Synthesis of nanocrystalline magnesium diboride (MgB2) metallic superconductor by mechano-chemical reaction and post-annealing. J. Alloys Compd. 407, 268–273 (2006)

    Article  Google Scholar 

  16. M.A. Korchagin, V.E. Zarko, The effect of preliminary mechanical working of Mg and B mixture on the parameters of its thermal expansion and reaction products characteristics, in Proceedings of the 56th Israel Annual Conference on Aerospace Sciences, Tel-Aviv & Haifa, Israel, March 9–10 (2016)

  17. M. Vignolo, G. Romano, D. Nardelli, E. Bellingeri et al., In situ high-energy synchrotron x-ray diffraction investigation of phase formation and sintering in MgB2 tapes. Supercond. Sci. Technol. 24, 10 (2010)

    Google Scholar 

  18. G. Mamniashvili, D. Daraselia, D. Japaridze, A. Peikrishvili, B. Godibadze, Liquid-phase shock-assisted consolidation of superconducting MgB2 composites. J. Supercond. Nov. Magn. 28, 1925–1929 (2015)

    Article  Google Scholar 

  19. I.D.R. Mackinnon, A. Winnett, J.A. Alarco, P.C. Talbot, Synthesis of MgB2 at low temperature and autogenous pressure. Materials 7, 3901–3918 (2014)

    Article  ADS  Google Scholar 

  20. A.G. Bhagurkar, N.H. Babu, A.R. Dennis, J.H. Durrell, D.A. Cardwell, Characterization of bulk MgB2 synthesized by ınfiltration and growth, in Applied Superconductivity Conference ASC2014-4MOr2C-01, pp. 1–4 (2014)

  21. B.A. Glowacki, M. Majoros, M. Vickers, J.E. Evetts, Y. Shi, I. McDougall, Superconductivity of powder-in-tube MgB2 wires. Supercond. Sci. Technol. 14, 193–199 (2001)

    Article  ADS  Google Scholar 

  22. Y. Tang, X.J. Kong, L.D. Fang, H.T. Wang, The effect of B2O3 impurity in the original B powder on the phase formation of MgB2 during the sintering process. Physica C 471, 1660–1663 (2011)

    Article  ADS  Google Scholar 

  23. N. Rogado, M.A. Hayward, K.A. Regan, Y.Y. Wang, N.P. Ong, H.W. Zandbergen, J.M. Rowell, R.J. Cava, Low temperature synthesis of MgB2. J. Appl. Phys. 91, 274–277 (2002)

    Article  ADS  Google Scholar 

  24. J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A.D. Caplin, L.F. Cohen, M. Manus, J.L. Driscoll, L.D. Cooley, X. Song, D.C. Larbalestier, High critical current density and improved irreversibility field in bulk MgB2 made by a scaleable, nanoparticle addition route. Appl. Phys. Lett. 81, 2026–2028 (2002)

    Article  ADS  Google Scholar 

  25. S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419–3421 (2002)

    Article  ADS  Google Scholar 

  26. X.H. Zeng, A. Sukiasyan, X.X. Xi, Y.F. Hu et al., Superconducting properties of nanocrystalline MgB2 thin films made by an in situ annealing process. Appl. Phys. Lett. 79, 1840–1842 (2001)

    Article  ADS  Google Scholar 

  27. R. Zeng, L. Lu, J.L. Wang, J. Horvat, W.X. Li, D.Q. Shi, S.X. Dou, M. Tomsic, M. Rindfleisch, Significant improvement in the critical current density of in situ MgB2 by excess Mg addition. Supercond. Sci. Technol. 20, L43–L47 (2007)

    Article  ADS  Google Scholar 

  28. C.H. Jiang, T. Nakane, T.H. Kumakura, Superior high-field current density in slightly Mg-deficient MgB2 tapes. Appl. Phys. Lett. 87, 252505 (2005)

    Article  ADS  Google Scholar 

  29. J. Lu, Z. Xiao, Q. Lin, H. Claus, Z. Fang, Low-temperature synthesis of superconducting nanocrystalline MgB2. J. Nanomater. (2010). doi:10.1155/2010/191058

    Google Scholar 

  30. Z. Ma, Y. Liu, Z. Gao, The synthesis and grain connectivity of lamellar MgB2 grains by Cu-activated sintering at low temperature. Scripta Mater. 63, 399–402 (2010)

    Article  Google Scholar 

  31. X. Xu, J.H. Kim, M.S.A. Hossain, J.S. Park, Y. Zhao, S.X. Dou, W.K. Yeoh, M. Rindfleisch, M. Tomsic, Phase transformation and superconducting properties of MgB2 using ball-milled low purity boron. J. Appl. Phys. 103, 023912–023912-7 (2008)

    Article  ADS  Google Scholar 

  32. Z. Ma, Y. Liu, Q. Shi, Q. Zhao, Z. Gao, The mechanism of accelerated phase formation of MgB2 by Cu-doping during low temperature sintering. Mater. Res. Bull. 44, 531–537 (2009)

    Article  Google Scholar 

  33. R. Ricceri, P. Matteazzi, Mechanochemical. Synthesis of elemental boron. Int. J. Powder Metall. 3, 48–52 (2003)

    Google Scholar 

  34. S. Boily, H.D. Alamdari, R. Dubuc, J. Gaudet, Process for the Production of Elemental Boron by Solid State Reaction, WIPO Patent, No: 03051773 (2003)

  35. Y.B. Zhang, M. Zeng, Z.S. Gao, J. Liu, H.M. Zhu, S.P. Zhou, Synthesis and characterization of MgB2–MgO composite superconductor. J. Supercond. Nov. Magn. 22, 729–732 (2009)

    Article  Google Scholar 

  36. Z.K. Liu, D.G. Schlom, Q. Li, X.X. Xi, Thermodynamics of the Mg-B system: implications for the deposition of MgB2 thin films. Appl. Phys. Lett. 78, 3678–3680 (2001)

    Article  ADS  Google Scholar 

  37. Y. Birol, Aluminothermic reduction of boron oxide for manufacture of Al–B alloys. Mater. Chem. Phys. 136, 963–996 (2012)

    Article  Google Scholar 

  38. J.C. Southard, The thermal properties of crystalline and glassy boron trioxide. J. Am. Chem. Soc. 63, 3147–3150 (1941)

    Article  Google Scholar 

  39. D. Agaogullari, O. Balci, I. Duman, Mechanisms and effects of various reducing agents on the fabrication of elemental Boron, in METAL 2010: 19th International Metallurgical and Materials Conference, pp. 748–752 (2010)

  40. J.Y. Lok, K.V. Logan, J.J. Payyapilly, Acid leaching of SHS produced magnesium oxide/titanium boride. J. Am. Ceram. Soc. 92, 26–31 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

F. Alageyik and E. Karabeyoglu are thanked for their help in the experimental part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucel Birol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birol, Y. Low-temperature synthesis of MgB2 via powder metallurgy processing. Appl. Phys. A 122, 1055 (2016). https://doi.org/10.1007/s00339-016-0604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0604-8

Keywords

Navigation