Skip to main content

Controlled electromigration and oxidation of free-standing copper wires

Abstract

We have studied controlled electromigration (EM) in free-standing copper wires. Besides electrical characterization by voltage–current measurements, structural analyses have been performed by means of scanning electron microscopy and cross-sectional microprobe measurements. We have found that oxidation during the EM in air stabilizes the free-standing wire against uncontrolled blowing, making it possible to thin the conductive part of the wire down to a conductance of a few conductance quanta \(G_0=2e^2{/}h\). The decisive influence of oxidation by air on the EM process was confirmed by control experiments performed under ultra-high vacuum conditions. In line with these findings, free-standing Au wires were difficult to thin down reproducibly to a conductance of a few \(G_0\). Estimates of the local temperature in the free-standing wire are obtained from finite element method calculations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. Black, IEEE Trans. Electron Dev. 16, 338 (1969)

    ADS  Article  Google Scholar 

  2. 2.

    C.S. Hau-Riege, Microelectron. Reliab. 44, 195 (2004)

    Article  Google Scholar 

  3. 3.

    D.R. Strachan, D.E. Smith, D.E. Johnston, T.H. Park, M.J. Therien, D.A. Bonnell, A.T. Johnson, Appl. Phys. Lett. 86(4), 043109 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    R. Hoffmann, D. Weissenberger, J. Hawecker, D. Stöffler, Appl. Phys. Lett. 93(4), 043118 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nature 407(6800), 57 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344(6188), 1135 (2014)

    ADS  Article  Google Scholar 

  7. 7.

    G. Esen, M.S. Fuhrer, Appl. Phys. Lett. 87(26), 263101 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    D. Stöffler, S. Fostner, P. Grütter, R. Hoffmann-Vogel, Phys. Rev. B 85(3), 033404 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377(23), 81 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    K. Hansen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Phys. Rev. B 56, 2208 (1997)

    ADS  Article  Google Scholar 

  11. 11.

    D.J. Bakker, Y. Noat, A.I. Yanson, J.M. van Ruitenbeek, Phys. Rev. B 65, 235416 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    M. Kiguchi, T. Konishi, S. Miura, K. Murakoshi, Nanotechnology 18, 424011 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    I.K. Yanson, O.I. Shklyarevskii, S. Csonka, H. Kempen, S. Speller, A.I. Yanson, J.M. van Ruitenbeek, Phys. Rev. Lett. 95, 256806 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    Y. Kurui, Y. Oshima, K. Takayanagi, J. Phys. Soc. Jpn. 76, 123601 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    R. de Orio, H. Ceric, S. Selberherr, Microelectron. Reliab. 50(6), 775 (2010)

    Article  Google Scholar 

  16. 16.

    R. Kirchheim, Acta Metall. Mater. 40, 309 (1992)

    Article  Google Scholar 

  17. 17.

    M.A. Korhonen, P. Borgesen, K.N. Tu, C.Y. Li, J. Appl. Phys. 73, 3790 (1993)

    ADS  Article  Google Scholar 

  18. 18.

    C.K. Hu, L. Gignac, E. Liniger, B. Herbst, D.L. Rath, S.T. Chen, S. Kaldor, A. Simon, W.T. Tseng, Appl. Phys. Lett. 83, 869 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Z.S. Choi, R. Mönig, C.V. Thompson, J. Appl. Phys. 102, 083509 (2007)

    ADS  Article  Google Scholar 

  20. 20.

    R.C. Weast, M.J. Astle, W.H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2005)

    Google Scholar 

  21. 21.

    O. Madelung, U. Rössler, M. Schulz, SpringerMaterials; sm_lbs_978-3-540-31360-1_68 (Springer, Heidelberg, 1998)

    Google Scholar 

  22. 22.

    Z.M. Wu, M. Steinacher, R. Huber, M. Calame, S.J. van der Molen, C. Schönenberger, Appl. Phys. Lett. 91(5), 053118 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    J.M. Campbell, R.G. Knobel, Appl. Phys. Lett. 102(2), 023105 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    Y. Kanamaru, M. Ando, J. Shirakashi, J. Vac. Sci. Technol. B 33(2), 02B106 (2015)

    Article  Google Scholar 

  25. 25.

    B. Kießig, R. Schäfer, H.v. Löhneysen, New J. Phys. 16(1), 013017 (2014)

    Article  Google Scholar 

  26. 26.

    Comsol Inc., COMSOL Multiphysics 4.3a. https://www.comsol.com

  27. 27.

    D.C. Giancoli, Physics: Principles with Applications, 3rd edn. (Prentice-Hall International, London, 1991)

    Google Scholar 

Download references

Acknowledgements

We thank S. Schneider for help with the SEM and C. Pérez León for useful discussions. M. Marz is grateful for support by the Alexander von Humboldt Foundation (Alexander von Humboldt-Stiftung). This work was supported by the ERC Starting Grant NANOCONTACTS (No. 239838) and by the Ministry of Science and Arts (BW), in the framework of its Schlieben-Lange program (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Marz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hauser, J.S., Schwichtenberg, J., Marz, M. et al. Controlled electromigration and oxidation of free-standing copper wires. Appl. Phys. A 122, 1068 (2016). https://doi.org/10.1007/s00339-016-0600-z

Download citation

Keywords

  • Cu2O
  • Joule Heating
  • Outer Ring
  • Conductance Quantum
  • Wire Cross Section