Skip to main content
Log in

Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdS/Si nanoheterojunctions have been fabricated by growing nanocrystal CdS (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) through using a chemical bath deposition method. The nanoheterojunctions have been constructed by three layers: the upper layer being a nc-CdS thin films, the intermediate layer being the interface region including nc-CdS and nanocrystal silicon (nc-Si), and the bottom layer being nc-Si layer grown on sc-Si substrate. The room temperature and temperature-dependent photoluminescence (PL) have been measured and analyzed to provide some useful information of defect states. Utilizing the Gauss–Newton fitting method, five emission peaks from the temperature-dependent PL spectra can be determined. From the high energy to low energy, these five peaks are ascribed to the some luminescence centers which are formed by the oxygen-related deficiency centers in the silicon oxide layer of Si-NPA, the band gap emission of nc-CdS, the transition from the interstitial cadmium (ICd) to the valence band, the recombination from ICd to cadmium vacancies (VCd), and from sulfur vacancies (Vs) to the valence band, respectively. Understanding of the defect states in the CdS/Si nanoheterojunctions is very meaningful for the performance of devices based on CdS/Si nanoheterojunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.X. Reynolds, T. Lutz, S. Dowland, A. MacLachlan, S. King, S.A. Haque, Nanoscale 4, 1561 (2012)

    Article  ADS  Google Scholar 

  2. F. Chen, W. Qiu, X. Chen, L. Yang, X. Jiang, M. Wang, H. Chen, Sol. Energy 85, 2122 (2011)

    Article  ADS  Google Scholar 

  3. C. He, C.B. Han, Y.R. Xu, X.J. Li, J. Appl. Phys. 110, 094316 (2011)

    Article  ADS  Google Scholar 

  4. M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H.D. Sun, X.W. Sun, J. Lumin. 132, 467 (2012)

    Article  Google Scholar 

  5. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  6. Y. Ma, X. Li, Z. Yang, H. Yu, P. Wang, L. Tong, Appl. Phys. Lett. 97, 153122 (2010)

    Article  ADS  Google Scholar 

  7. A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, B. Zou, Small 1, 980 (2005)

    Article  Google Scholar 

  8. X. Xu, Y. Zhao, E.J. Sie, Y. Lu, B. Liu, S.A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T.C. Sum, C.H.A. Huan, Y.P. Feng, Q. Xiong, ACS Nano 5, 3660 (2011)

    Article  Google Scholar 

  9. B. Liu, R. Chen, X.L. Xu, D.H. Li, Y.Y. Zhao, Z.X. Shen, Q.H. Xiong, H.D. Sun, J. Phys. Chem. C 115, 12826 (2011)

    Article  Google Scholar 

  10. H. Metin, R. Esen, J. Cryst. Growth 258, 141 (2003)

    Article  ADS  Google Scholar 

  11. A.E. Abken, D.P. Halliday, K. Durose, J. Appl. Phys. 105, 064515 (2009)

    Article  ADS  Google Scholar 

  12. A.G. Cullis, L.T. Canham, Nature 353, 335–338 (1991)

    Article  ADS  Google Scholar 

  13. F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A.K. Powell, G.A. Ozin, U. Lemmer, Nano Lett. 13, 475–480 (2013)

    Article  ADS  Google Scholar 

  14. K.Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes, Nano Lett. 11, 1952–1956 (2011)

    Article  ADS  Google Scholar 

  15. H.J. Xu, X.J. Li, Opt. Express 16, 2933 (2008)

    Article  ADS  Google Scholar 

  16. X.J. Li, W.F. Jiang, Nanotechnology 18, 065203 (2007)

    Article  ADS  Google Scholar 

  17. C.B. Han, C. He, X.J. Li, Adv. Mater. 23, 4811 (2011)

    Article  Google Scholar 

  18. Y. Li, Y.-L. Song, F.-Q. Zhou, P.-F. Ji, M.-L. Tian, M.-L. Wan, H.-C. Huang, X.-J. Li, Mater. Lett. 164, 539–542 (2016)

    Article  Google Scholar 

  19. X. Zhang, C. Hägglund, E.M.J. Johansson, Adv. Funct. Mater. 26, 1253–1260 (2016)

    Article  Google Scholar 

  20. Q. Yang, D. Li, B. Yu, S. Huang, J. Wang, S. Li, J. Kang, Phys. Lett. A 380, 1044–1048 (2016)

    Article  ADS  Google Scholar 

  21. T. Prutskij, N. Makarov, G. Attolini, J. Appl. Phys. 119, 115702 (2016)

    Article  ADS  Google Scholar 

  22. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, S. Franchi, Phys. Rev. B 60, 8276 (1999)

    Article  ADS  Google Scholar 

  23. Y. Li, X.B. Wang, Z.Q. Fan, X.J. Li, Chin. Phys. Lett. 31, 047801 (2014)

    Article  ADS  Google Scholar 

  24. S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Y. Deak Kim, T. Kim, Vacuum 83, 1066 (2009)

    Article  ADS  Google Scholar 

  25. S. Kumar, P. Sharma, V. Sharma, J. Appl. Phys. 111, 113510–113518 (2012)

    Article  ADS  Google Scholar 

  26. Y. Li, S.Q. Yuan, X.J. Li, Mater. Lett. 136, 67–70 (2014)

    Article  Google Scholar 

  27. V. Singh, P. Chauhan, J. Phys. Chem. Solids 70, 1074–1079 (2009)

    Article  ADS  Google Scholar 

  28. O. Vigil, I. Riech, M. Garcia-Rocha, O. Zelaya-Angel, J. Vac. Sci. Technol. A 15, 2282 (1997)

    Article  ADS  Google Scholar 

  29. M. Zhang, M. Wille, R. Röder, S. Heedt, L. Huang, Z. Zhu, S. Geburt, D. Grützmacher, T. Schäpers, C. Ronning, J.G. Lu, Nano Lett. 14, 518–523 (2014)

    Article  ADS  Google Scholar 

  30. W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, W.W. Yu, J. Phys. Chem. C 117, 19288–19294 (2013)

    Google Scholar 

  31. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, M. Anni, J. Phys. Chem. C 111, 5846 (2007)

    Article  Google Scholar 

  32. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, M. Anni, Phys. Rev. B 71, 235409 (2005)

    Article  ADS  Google Scholar 

  33. Y. Li, X.-B. Wang, J.-C. Zhao, X.-J. Li, Chin. Phys. Lett. 31, 77802–77805 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Project for Basic and Forefront Technology of Henan Province (132300410301 and 152300410173), the Key Research Project for Science and Technology of the Education Department of Henan Province (13B430181 and 15A140012) and the Science and Technology Project on Key Problems of Pingdingshan City (2014082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.L., Ling, H., Li, Y. et al. Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions. Appl. Phys. A 122, 1061 (2016). https://doi.org/10.1007/s00339-016-0598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0598-2

Keywords

Navigation