Skip to main content
Log in

Facile fabrication of silver nanoparticles with temperature-responsive sizes as highly active SERS substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In our work, large-scale silver NPs (nanoparticles) are successfully synthesized on zinc foils with controllable size by regulating the temperature of the displacement reaction. Our results show that when the temperature is 70 °C, the average size of silver NPs is approximately 88 nm in diameter, and they exhibit the strongest SERS activity. The gap between nanoparticles is simultaneously regulated as near as possible, which produces abundant “hot spots” and nanogaps. Crystal violet (CV) was used as probe molecules, and the SERS signals show that the values of relative standard deviation in the intensity of the main vibration modes are less than 10%, demonstrating excellent reproducibility of the silver NPs. Furthermore, the high surface-average enhancement factor of ~3.86 × 107 is achieved even when the concentration of CV is 10−7 M, which is sufficient for single-molecule detection. We believe that this low cost and rapid route would get wide applications in chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridzne adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)

    Article  ADS  Google Scholar 

  2. K. Kim, K.S. Shin, Surface-enhanced Raman scattering: a powerful tool for chemical identification. Anal. Sci. 27(8), 775–783 (2011)

    Article  Google Scholar 

  3. J. Kneipp, H. Kneipp, K. Kneipp, SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37(5), 1052–1060 (2008). doi:10.1039/b708459p

    Article  Google Scholar 

  4. S. Yang, X. Dai, B.B. Stogin, T.S. Wong, Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 113(2), 268–273 (2016). doi:10.1073/pnas.1518980113

    Article  ADS  Google Scholar 

  5. F.J. Garcia-Vidal, J.B. Pendry, Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77(6), 1163–1166 (1996). doi:10.1103/PhysRevLett.77.1163

    Article  ADS  Google Scholar 

  6. H. Xu, J. Aizpurua, M. Käll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62(3), 4318–4324 (2000)

    Article  ADS  Google Scholar 

  7. X. Gong, Y. Bao, C. Qiu, C. Jiang, Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chem. Commun. 48(56), 7003–7018 (2012). doi:10.1039/c2cc31603j

    Article  Google Scholar 

  8. C.L. Haynes, A.D. McFarland, L.L. Zhao, R.P. Van Duyne, G.C. Schatz, Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107(30), 7337–7342 (2003)

    Article  Google Scholar 

  9. L. Zhang, X. Gong, Y. Bao, Y. Zhao, M. Xi, C. Jiang, H. Fong, Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Langmuir 28(40), 14433–14440 (2012). doi:10.1021/la302779q

    Article  Google Scholar 

  10. E.Z. Tan, P.G. Yin, T.T. You, H. Wang, L. Guo, Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection. ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012). doi:10.1021/am3004126

    Article  Google Scholar 

  11. C.H. Xiao, B.X. Xiao, Y.D. Wang, J. Zhang, S.M. Wang, P. Wang, T.Y. Yang, R. Zhao, H. Yu, Z.F. Li, M.Z. Zhang, Synthesis of ZnO nanosheets decorated with Au nanoparticles and its application in recyclable 3D surface-enhanced Raman scattering substrates. RSC Adv. 5(23), 17945–17952 (2015). doi:10.1039/c4ra15193c

    Article  Google Scholar 

  12. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298(13), 2176–2179 (2002)

    Article  ADS  Google Scholar 

  13. S.K. Yang, W.P. Cai, L.C. Kong, Y. Lei, Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties. Adv. Funct. Mater. 20(15), 2527–2533 (2010). doi:10.1002/adfm.201000467

    Article  Google Scholar 

  14. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). doi:10.1126/science.275.5303.1102

    Article  Google Scholar 

  15. H.H. Wang, C.Y. Liu, S.B. Wu, N.W. Liu, C.Y. Peng, T.H. Chan, C.F. Hsu, J.K. Wang, Y.L. Wang, Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 18(4), 491–495 (2006). doi:10.1002/adma.200501875

    Article  Google Scholar 

  16. P.P. Zhang, J. Gao, X.H. Sun, An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays. Appl. Phys. Lett. 106(4), 043103 (2015). doi:10.1063/1.4906800

    Article  ADS  Google Scholar 

  17. T.R. Jensen, G. Schatz, R.P. Van Duyne, Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103(13), 2394–2401 (1999)

    Article  Google Scholar 

  18. L. Gunnarsson, E.J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, M. Käll, Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 78(6), 802 (2001). doi:10.1063/1.1344225

    Article  ADS  Google Scholar 

  19. C.L. Haynes, R.P. Van Duyne, Plasmon-sampled surface-enhanced raman excitation spectroscopy. J. Phys. Chem. B 107(30), 7426–7433 (2003)

    Article  Google Scholar 

  20. Y. Lu, G.L. Liu, L.P. Lee, High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5(1), 5–9 (2005). doi:10.1021/nl048965u

    Article  ADS  Google Scholar 

  21. Y.L. Kuo, T.Y. Juang, S.H. Chang, C.M. Tsai, Y.S. Lai, L.C. Yang, C.L. Huang, Influence of temperature on the formation of silver nanoparticles by using a seed-free photochemical method under sodium-lamp irradiation. ChemPhysChem: Eur. J. Chem. Phys. Phys. Chem. 16(15), 3254–3263 (2015). doi:10.1002/cphc.201500485

    Article  Google Scholar 

  22. E. de Barros Santos, N.V. Madalossi, F.A. Sigoli, I.O. Mazali, Silver nanoparticles: green synthesis, self-assembled nanostructures and their application as SERS substrates. New J. Chem. 39(4), 2839–2846 (2015). doi:10.1039/c4nj02239d

    Article  Google Scholar 

  23. Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, Y. Lei, Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015). doi:10.1021/acsami.5b01524

    Article  Google Scholar 

  24. Y. Xia, S.E. Skrabalak, J. Chen, X. Lu, Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures. Proc. Inst. Mech. Eng. Part N: J. Nanoeng. Nanosyst. 221(1), 1–16 (2007). doi:10.1243/17403499jnn111

    Google Scholar 

  25. W. Song, Y. Cheng, H. Jia, W. Xu, B. Zhao, Surface enhanced Raman scattering based on silver dendrites substrate. J. Colloid Interface Sci. 298(2), 765–768 (2006). doi:10.1016/j.jcis.2006.01.037

    Article  Google Scholar 

  26. J.J. Fu, W.C. Ye, C.M. Wang, Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)(2)]Cl for ultrasensitive SERS detecting of biomolecules. Mater. Chem. Phys. 141(1), 107–113 (2013). doi:10.1016/j.matchemphys.2013.04.031

    Article  Google Scholar 

  27. B. Goris, L. Polavarapu, S. Bals, G. Van Tendeloo, L.M. Liz-Marzan, Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. Nano Lett. 14(6), 3220–3226 (2014). doi:10.1021/nl500593j

    Article  ADS  Google Scholar 

  28. E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111(37), 13794–13803 (2007)

    Article  Google Scholar 

  29. Y. Gu, S. Xu, H. Li, S. Wang, M. Cong, J.R. Lombardi, W. Xu, Waveguide-enhanced surface plasmons for ultrasensitive SERS detection. J. Phys. Chem. Lett. 4(18), 3153–3157 (2013). doi:10.1021/jz401512k

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the financial support by the National Natural Science Foundation of China (Grant No. 61371057), the National Special Fund for the Development of Major Research Equipment and Instruments (Grant No. 2011YQ03013403) and the Open Research Fund Program of Jiangsu Provincial Key Lab. of Center (GZ201309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfei Cheng or Xiao Gong.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest that can inappropriately influence our work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Fang, J., Cheng, M. et al. Facile fabrication of silver nanoparticles with temperature-responsive sizes as highly active SERS substrates. Appl. Phys. A 122, 1065 (2016). https://doi.org/10.1007/s00339-016-0584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0584-8

Keywords

Navigation