Photoluminescence properties of zinc white: an insight into its emission mechanisms through the study of historical artist materials


While the photophysical properties of ZnO nanostructures have been widely explored, less research has focused on the bulk material present in artist pigments. This study is based on the analysis of historical pastels, representative of artist materials available at the turn of the twentieth century, and of the pure powder pigment as the control sample. The study of the intensity of the photoluminescence emission as a function of the fluence and of the nanosecond and microsecond emission decay kinetic properties allows the elucidation of the emission mechanisms in control ZnO and historical samples containing ZnO. Data suggest that in historical samples the near-band-edge free-exciton photoluminescence emission, typically occurring in the pure semiconductor, is influenced by the interaction of the pigment with surrounding organic binding material. Conversely, crystal defects, typically expected in historical samples following the imperfect synthesis process available at the beginning of the twentieth century, introduce minor modifications to the photoluminescence emission. The study further suggests that zinc carboxylates, detected in all historical samples and known to introduce characteristic groups on the surface of ZnO, could be responsible for changes in emission mechanisms. Research demonstrates how photoluminescence decay kinetics and the study of the dependence of the emission intensity on the fluence are powerful methods for elucidating the nature of the mechanism processes in luminescent semiconductor pigments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    G. Osmond, Zinc white a review of zinc oxide pigment properties and implications for stability in oil based paintings. AICCM Bull. 33, 20–29 (2012)

    Article  Google Scholar 

  2. 2.

    G. Buxbaum, Industrial Inorganic Pigments, 281 (VCH, Weinheim, 1993)

    Google Scholar 

  3. 3.

    D.B. Faloon, Zinc Oxide: History, Manufacture and Properties as a Pigment (Van Nostrand, 1925)

  4. 4.

    A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185186, 1–22 (2012)

    Article  Google Scholar 

  5. 5.

    F. Casadio, V. Rose, High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso. Appl. Phys. A 111, 18 (2013)

    Article  Google Scholar 

  6. 6.

    V. Capogrosso, F. Gabrieli, S. Bellei, L. Cartechini, A. Cesaratto, N. Trcera, F. Rosi, G. Valentini, D. Comellia, A. Nevin, An integrated approach based on micro-mapping analytical techniques for the detection of impurities in historical Zn-based white pigments. J. Anal. At. Spectrom. 30, 828–838 (2015)

    Article  Google Scholar 

  7. 7.

    P.A. Rodnyi, I.V. Khodyuk, Optical and luminescence properties of zinc oxide (review). Opt. Spectrosc. 111, 776–785 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    U. Özgür, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98(7), 1255–1268 (2010)

    Article  Google Scholar 

  9. 9.

    C.W. Litton, D.C. Reynolds, T.C. Collins, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications (Wiley, Hoboken, 2011). doi:10.1002/9781119991038

    Google Scholar 

  10. 10.

    Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    A. Alkauskas, M.D. McCluskeyn, C.G. Van de Walle, Tutorial: defects in semiconductors—combining experiment and theory. J. Appl. Phys. 119, 181101 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 81, 622–624 (2002)

    ADS  Article  Google Scholar 

  13. 13.

    T.M. Børseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, M. Willander, Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 89, 262112 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    C. Clementi, F. Rosi, A. Romani, R. Vivani, B.G. Brunetti, C. Miliani, Photoluminescence properties of zinc oxide in paints: a study of the effect of self-absorption and passivation. Appl. Spectrosc. 66, 1233–1241 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    M. Thoury, J.P. Echard, M. Réfrégiers, B. Berrie, A. Nevin, F. Jamme, L. Bertrand, Synchrotron UV–visible multispectral luminescence microimaging of historical samples. Anal. Chem. 83, 1737–1745 (2011)

    Article  Google Scholar 

  16. 16.

    L. Bertrand, M. Réfrégiers, B. Berrie, J.P. Échard, M. Thoury, A multiscalar photoluminescence approach to discriminate among semiconducting historical zinc white pigments. Analyst 138, 4463–4469 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    T. Schmidt, K. Lischka, W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992)

    ADS  Article  Google Scholar 

  18. 18.

    H. Shibata, M. Sakai, A. Yamada, K. Matsubara, K. Sakurai, H. Tampo, S. Ishizuka, K. Kim, S. Niki, Excitation-power dependence of free exciton photoluminescence of semiconductors. Jpn. J. Appl. Phys. 44, 6113 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    S. Lettieri, V. Capello, L. Santamaria, P. Maddalena, On quantitative analysis of interband recombination dynamics: theory and application to bulk ZnO. Appl. Phys. Lett. 103, 241910 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    S. Mosca, T. Frizzi, M. Pontone, R. Alberti, L. Bombelli, V. Capogrosso, A. Nevin, G. Valentini, D. Comelli, Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 124, 775–784 (2016)

    Article  Google Scholar 

  21. 21.

    S.E.J. Bell, E.S.O. Bourguignon, A. Dennis, Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst 123, 17291734 (1998). doi:10.1039/a802802h

    Article  Google Scholar 

  22. 22.

    I. Osticioli, J. Raman Spectrosc. 37, 974980 (2006)

    Article  Google Scholar 

  23. 23.

    F. Rosi, M. Paolantoni, C. Clementi, B. Doherty, C. Miliani, B.G. Brunetti et al., Subtracted shifted Raman spectroscopy of organic dyes and lakes. J. Raman Spectrosc. 41, 452458 (2010). doi:10.1002/jrs.2447

    Google Scholar 

  24. 24.

    RRUFF Project website. (2016)

  25. 25.

    Raman Spectroscopic Library. (2016)

  26. 26.

    V.A. Solé, E. Papillon, M. Cotte, P.H. Walter, J. Susini, A multiplatform code for the analysis of energydispersive X-ray fluorescence spectra. J. Spectrochim. Acta B 62, 6368 (2007)

    Google Scholar 

  27. 27.

    D. Comelli, A. Nevin, A. Brambilla, I. Osticioli, G. Valentini, L. Toniolo, M. Fratelli, R. Cubeddu, On the discovery of an unusual luminescent pigment in Van Gogh’s painting ’Les bretonnes et le pardon de pont Aven’. Appl. Phys. A 106, 25–34 (2012)

    ADS  Article  Google Scholar 

  28. 28.

    G. Verri, C. Clementi, D. Comelli, S. Cather, F. Piqueé, Correction of ultraviolet-induced fluorescence spectra for the examination of polychromy. Appl. Spectrosc. 62, 1295–1302 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    G. Osmond, J.J. Boonc, L. Puskard, J. Drennana, Metal stearate distributions in modern artists’ oil paints: surface and cross-sectional investigation of reference paint films using conventional and synchrotron infrared microspectroscopy. Appl Spectrosc. 66, 1136–1144 (2012)

    ADS  Article  Google Scholar 

  30. 30.

    L. Robinet, M.C. Corbeil, The characterization of metal soaps. Stud. Conserv. 48, 23–40 (2003)

    Article  Google Scholar 

  31. 31.

    J.J. Boon, J. van der Weerd, K. Keune, P. Noble, J. Wadum, Mechanical and chemical changes in old master paintings: dissolution, metal soap formation and remineralization processes in lead pigmented ground/intermediate paint layers of seventeenth century paintings, in 13th Triennial Meeting Rio de Janeiro 22–27 September 2002: ICOM Committee for Conservation, ed. by R. Vontobel (James & James, London, 2002), pp. 401–406

  32. 32.

    E. Erdem, Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: a study of electron paramagnetic resonance (EPR) spectroscopy. J. Alloys Compd. 605, 34–44 (2014)

    Article  Google Scholar 

  33. 33.

    A.B. Djurišić, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2(8–9), 944–961 (2006). doi:10.1002/smll.200600134

    Google Scholar 

  34. 34.

    N.S. Han, H.S. Shim, J.H. Seo, S.Y. Kim, S.M. Park, J.K. Song, Defect states of ZnO nanoparticles: discrimination by time-resolved photoluminescence spectroscopy. J. Appl. Phys. 107, 084306 (2010)

    ADS  Article  Google Scholar 

  35. 35.

    K. Kodama, T. Uchino, Thermally activated below-band-gap excitation behind green photoluminescence in ZnO. J. Appl. Phys. 111, 093525 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, G. Salviati, Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci. Rep. 4, 5158 (2014)

    ADS  Google Scholar 

  37. 37.

    J.V. Foreman, J.G. Simmons, W.E. Baughman, J. Liu, H.O. Everitt, Localized excitons mediate defect emission in ZnO powders. J. Appl. Phys. 113, 133513 (2013)

    ADS  Article  Google Scholar 

  38. 38.

    Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Green luminescence originates from surface defects in ZnO nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 35, 199 (2006)

    ADS  Article  Google Scholar 

  39. 39.

    M. Lorenz, R. Johne, T. Nobis, H. Hochmuth, J. Lenzner, M. Grundmann, H.P.D. Schenk, S.I. Borenstain, A. Schon, C. Bekeny, T. Voss, J. Gutowski, Fast, high-efficiency, and homogeneous room-temperature cathodoluminescence of ZnO scintillator thin films on sapphire. Appl. Phys. Lett. 89, 243510 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    C. Ton-That, L. Weston, M.R. Phillips, Characteristics of point defects in the green luminescence from Zn- and O-rich ZnO. Phys. Rev. B 86, 115–205 (2012)

    Article  Google Scholar 

  41. 41.

    S.A. Studenikin, M. Cocivera, Time-resolved luminescence and photoconductivity of polycrystalline ZnO films. J. Appl. Phys. 91, 5060–5065 (2002)

    ADS  Article  Google Scholar 

  42. 42.

    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, A.V. Rodina, Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Stat. Sol. 241, 231–260 (2004)

    ADS  Article  Google Scholar 

  43. 43.

    A.K. Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014)

    ADS  Article  Google Scholar 

  44. 44.

    J.J. Hermans, K. Keune, A. Van Loon, P.D. Iedema, An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. J. Anal. At. Spectrom. 30, 1600–1608 (2015)

    Article  Google Scholar 

  45. 45.

    G. Osmond, B. Ebert, J. Drennan, Zinc oxide-centred deterioration in 20th century Vietnamese paintings by Nguyen Trong Kiem (19331991). AICCM Bull. 34, 4 (2014)

    Article  Google Scholar 

Download references


Authors wish to thank the Central European Research Infrastructure Consortium (CERIC-ERIC) for measurements and analyses of FE-SEM and Francesca Gherardi from Chemistry Department of Politecnico di Milano for measurements and analyses of FTIR spectroscopy. We are grateful to Lucia Toniolo from Chemistry Department of Politecnico di Milano for providing us historical samples. Research was partially funded by the Italian Ministry of Education, Universities and Research within the framework of the JPI Cultural Heritage JHEP Pilot call through the LeadART project ‘Induced decay and ageing mechanisms in paintings: focus on interactions between lead and zinc white and organic material’.

Author information



Corresponding author

Correspondence to A. Artesani.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artesani, A., Bellei, S., Capogrosso, V. et al. Photoluminescence properties of zinc white: an insight into its emission mechanisms through the study of historical artist materials. Appl. Phys. A 122, 1053 (2016).

Download citation


  • Zinc Oxide
  • Green Emission
  • Emission Mechanism
  • Historical Sample
  • Effective Lifetime