Advertisement

Applied Physics A

, 122:1053 | Cite as

Photoluminescence properties of zinc white: an insight into its emission mechanisms through the study of historical artist materials

  • A. ArtesaniEmail author
  • S. Bellei
  • V. Capogrosso
  • A. Cesaratto
  • S. Mosca
  • A. Nevin
  • G. Valentini
  • D. Comelli
Article
Part of the following topical collections:
  1. Innovation in Art Research and Technology

Abstract

While the photophysical properties of ZnO nanostructures have been widely explored, less research has focused on the bulk material present in artist pigments. This study is based on the analysis of historical pastels, representative of artist materials available at the turn of the twentieth century, and of the pure powder pigment as the control sample. The study of the intensity of the photoluminescence emission as a function of the fluence and of the nanosecond and microsecond emission decay kinetic properties allows the elucidation of the emission mechanisms in control ZnO and historical samples containing ZnO. Data suggest that in historical samples the near-band-edge free-exciton photoluminescence emission, typically occurring in the pure semiconductor, is influenced by the interaction of the pigment with surrounding organic binding material. Conversely, crystal defects, typically expected in historical samples following the imperfect synthesis process available at the beginning of the twentieth century, introduce minor modifications to the photoluminescence emission. The study further suggests that zinc carboxylates, detected in all historical samples and known to introduce characteristic groups on the surface of ZnO, could be responsible for changes in emission mechanisms. Research demonstrates how photoluminescence decay kinetics and the study of the dependence of the emission intensity on the fluence are powerful methods for elucidating the nature of the mechanism processes in luminescent semiconductor pigments.

Keywords

Zinc Oxide Green Emission Emission Mechanism Historical Sample Effective Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors wish to thank the Central European Research Infrastructure Consortium (CERIC-ERIC) for measurements and analyses of FE-SEM and Francesca Gherardi from Chemistry Department of Politecnico di Milano for measurements and analyses of FTIR spectroscopy. We are grateful to Lucia Toniolo from Chemistry Department of Politecnico di Milano for providing us historical samples. Research was partially funded by the Italian Ministry of Education, Universities and Research within the framework of the JPI Cultural Heritage JHEP Pilot call through the LeadART project ‘Induced decay and ageing mechanisms in paintings: focus on interactions between lead and zinc white and organic material’.

Supplementary material

339_2016_578_MOESM1_ESM.pdf (439 kb)
Supplementary material 1 (PDF 438 kb)
339_2016_578_MOESM2_ESM.pdf (686 kb)
Supplementary material 2 (PDF 686 kb)
339_2016_578_MOESM3_ESM.pdf (307 kb)
Supplementary material 3 (PDF 306 kb)
339_2016_578_MOESM4_ESM.pdf (444 kb)
Supplementary material 4 (PDF 444 kb)
339_2016_578_MOESM5_ESM.pdf (1.9 mb)
Supplementary material 5 (PDF 1919 kb)

References

  1. 1.
    G. Osmond, Zinc white a review of zinc oxide pigment properties and implications for stability in oil based paintings. AICCM Bull. 33, 20–29 (2012)CrossRefGoogle Scholar
  2. 2.
    G. Buxbaum, Industrial Inorganic Pigments, 281 (VCH, Weinheim, 1993)Google Scholar
  3. 3.
    D.B. Faloon, Zinc Oxide: History, Manufacture and Properties as a Pigment (Van Nostrand, 1925)Google Scholar
  4. 4.
    A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185186, 1–22 (2012)CrossRefGoogle Scholar
  5. 5.
    F. Casadio, V. Rose, High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso. Appl. Phys. A 111, 18 (2013)CrossRefGoogle Scholar
  6. 6.
    V. Capogrosso, F. Gabrieli, S. Bellei, L. Cartechini, A. Cesaratto, N. Trcera, F. Rosi, G. Valentini, D. Comellia, A. Nevin, An integrated approach based on micro-mapping analytical techniques for the detection of impurities in historical Zn-based white pigments. J. Anal. At. Spectrom. 30, 828–838 (2015)CrossRefGoogle Scholar
  7. 7.
    P.A. Rodnyi, I.V. Khodyuk, Optical and luminescence properties of zinc oxide (review). Opt. Spectrosc. 111, 776–785 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    U. Özgür, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98(7), 1255–1268 (2010)CrossRefGoogle Scholar
  9. 9.
    C.W. Litton, D.C. Reynolds, T.C. Collins, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications (Wiley, Hoboken, 2011). doi: 10.1002/9781119991038 CrossRefGoogle Scholar
  10. 10.
    Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A. Alkauskas, M.D. McCluskeyn, C.G. Van de Walle, Tutorial: defects in semiconductors—combining experiment and theory. J. Appl. Phys. 119, 181101 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 81, 622–624 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    T.M. Børseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, M. Willander, Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 89, 262112 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    C. Clementi, F. Rosi, A. Romani, R. Vivani, B.G. Brunetti, C. Miliani, Photoluminescence properties of zinc oxide in paints: a study of the effect of self-absorption and passivation. Appl. Spectrosc. 66, 1233–1241 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Thoury, J.P. Echard, M. Réfrégiers, B. Berrie, A. Nevin, F. Jamme, L. Bertrand, Synchrotron UV–visible multispectral luminescence microimaging of historical samples. Anal. Chem. 83, 1737–1745 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Bertrand, M. Réfrégiers, B. Berrie, J.P. Échard, M. Thoury, A multiscalar photoluminescence approach to discriminate among semiconducting historical zinc white pigments. Analyst 138, 4463–4469 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    T. Schmidt, K. Lischka, W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    H. Shibata, M. Sakai, A. Yamada, K. Matsubara, K. Sakurai, H. Tampo, S. Ishizuka, K. Kim, S. Niki, Excitation-power dependence of free exciton photoluminescence of semiconductors. Jpn. J. Appl. Phys. 44, 6113 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    S. Lettieri, V. Capello, L. Santamaria, P. Maddalena, On quantitative analysis of interband recombination dynamics: theory and application to bulk ZnO. Appl. Phys. Lett. 103, 241910 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Mosca, T. Frizzi, M. Pontone, R. Alberti, L. Bombelli, V. Capogrosso, A. Nevin, G. Valentini, D. Comelli, Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 124, 775–784 (2016)CrossRefGoogle Scholar
  21. 21.
    S.E.J. Bell, E.S.O. Bourguignon, A. Dennis, Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst 123, 17291734 (1998). doi: 10.1039/a802802h CrossRefGoogle Scholar
  22. 22.
    I. Osticioli, J. Raman Spectrosc. 37, 974980 (2006)CrossRefGoogle Scholar
  23. 23.
    F. Rosi, M. Paolantoni, C. Clementi, B. Doherty, C. Miliani, B.G. Brunetti et al., Subtracted shifted Raman spectroscopy of organic dyes and lakes. J. Raman Spectrosc. 41, 452458 (2010). doi: 10.1002/jrs.2447 Google Scholar
  24. 24.
    RRUFF Project website. http://rruff.info (2016)
  25. 25.
    Raman Spectroscopic Library. http://www.chem.uc.ac.uk/resources/raman (2016)
  26. 26.
    V.A. Solé, E. Papillon, M. Cotte, P.H. Walter, J. Susini, A multiplatform code for the analysis of energydispersive X-ray fluorescence spectra. J. Spectrochim. Acta B 62, 6368 (2007)Google Scholar
  27. 27.
    D. Comelli, A. Nevin, A. Brambilla, I. Osticioli, G. Valentini, L. Toniolo, M. Fratelli, R. Cubeddu, On the discovery of an unusual luminescent pigment in Van Gogh’s painting ’Les bretonnes et le pardon de pont Aven’. Appl. Phys. A 106, 25–34 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    G. Verri, C. Clementi, D. Comelli, S. Cather, F. Piqueé, Correction of ultraviolet-induced fluorescence spectra for the examination of polychromy. Appl. Spectrosc. 62, 1295–1302 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    G. Osmond, J.J. Boonc, L. Puskard, J. Drennana, Metal stearate distributions in modern artists’ oil paints: surface and cross-sectional investigation of reference paint films using conventional and synchrotron infrared microspectroscopy. Appl Spectrosc. 66, 1136–1144 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    L. Robinet, M.C. Corbeil, The characterization of metal soaps. Stud. Conserv. 48, 23–40 (2003)CrossRefGoogle Scholar
  31. 31.
    J.J. Boon, J. van der Weerd, K. Keune, P. Noble, J. Wadum, Mechanical and chemical changes in old master paintings: dissolution, metal soap formation and remineralization processes in lead pigmented ground/intermediate paint layers of seventeenth century paintings, in 13th Triennial Meeting Rio de Janeiro 22–27 September 2002: ICOM Committee for Conservation, ed. by R. Vontobel (James & James, London, 2002), pp. 401–406Google Scholar
  32. 32.
    E. Erdem, Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: a study of electron paramagnetic resonance (EPR) spectroscopy. J. Alloys Compd. 605, 34–44 (2014)CrossRefGoogle Scholar
  33. 33.
    A.B. Djurišić, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2(8–9), 944–961 (2006). doi: 10.1002/smll.200600134 Google Scholar
  34. 34.
    N.S. Han, H.S. Shim, J.H. Seo, S.Y. Kim, S.M. Park, J.K. Song, Defect states of ZnO nanoparticles: discrimination by time-resolved photoluminescence spectroscopy. J. Appl. Phys. 107, 084306 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    K. Kodama, T. Uchino, Thermally activated below-band-gap excitation behind green photoluminescence in ZnO. J. Appl. Phys. 111, 093525 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, G. Salviati, Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci. Rep. 4, 5158 (2014)ADSGoogle Scholar
  37. 37.
    J.V. Foreman, J.G. Simmons, W.E. Baughman, J. Liu, H.O. Everitt, Localized excitons mediate defect emission in ZnO powders. J. Appl. Phys. 113, 133513 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Green luminescence originates from surface defects in ZnO nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 35, 199 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    M. Lorenz, R. Johne, T. Nobis, H. Hochmuth, J. Lenzner, M. Grundmann, H.P.D. Schenk, S.I. Borenstain, A. Schon, C. Bekeny, T. Voss, J. Gutowski, Fast, high-efficiency, and homogeneous room-temperature cathodoluminescence of ZnO scintillator thin films on sapphire. Appl. Phys. Lett. 89, 243510 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    C. Ton-That, L. Weston, M.R. Phillips, Characteristics of point defects in the green luminescence from Zn- and O-rich ZnO. Phys. Rev. B 86, 115–205 (2012)CrossRefGoogle Scholar
  41. 41.
    S.A. Studenikin, M. Cocivera, Time-resolved luminescence and photoconductivity of polycrystalline ZnO films. J. Appl. Phys. 91, 5060–5065 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, A.V. Rodina, Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Stat. Sol. 241, 231–260 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    A.K. Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    J.J. Hermans, K. Keune, A. Van Loon, P.D. Iedema, An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. J. Anal. At. Spectrom. 30, 1600–1608 (2015)CrossRefGoogle Scholar
  45. 45.
    G. Osmond, B. Ebert, J. Drennan, Zinc oxide-centred deterioration in 20th century Vietnamese paintings by Nguyen Trong Kiem (19331991). AICCM Bull. 34, 4 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dipartimento di FisicaPolitecnico di MilanoMilanItaly
  2. 2.Istituto di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche (IFN-CNR)MilanItaly
  3. 3.Department of Scientific ResearchThe Metropolitan Museum of ArtNew YorkUSA

Personalised recommendations