Skip to main content

Advertisement

Log in

Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin \(\hbox {SiO}_{2}\) and \({\hbox {SiN}}_{x}\) films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (\(E_{{\mathrm{gap,SiO}_{2}}}\approx 8\,\hbox {eV}; E_{{\mathrm{gap,SiN}}_{x}}\approx 2.5\,\hbox {eV}\)). In these works it was found that few 100 nm thick \(\hbox {SiO}_{2}\) films are selectively ablated with a “lift-off” initiated by confined laser ablation whereas the \(\hbox {SiN}_{{x}}\) films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the \(\hbox {SiO}_{2}\) sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the \(\hbox {SiO}_{2}\) layer by the expansion of the substrate. On the \(\hbox {SiN}_{{x}}\) sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Kauf, R. Patel, J. Bovatsek, Laser Tech. J. 6(1), 33 (2009)

    Article  Google Scholar 

  2. A.D. Compaan, I. Matulionis, S. Nakade, Opt. Lasers Eng. 34(1), 15 (2000)

    Article  Google Scholar 

  3. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68(2), 775 (1990)

    Article  ADS  Google Scholar 

  4. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, H.P. Huber, Appl. Phys. A Mater. Sci. Process. 102(1), 173 (2011)

    Article  ADS  Google Scholar 

  5. G. Heise, A. Börner, M. Dickmann, M. Englmaier, A. Heiss, M. Kemnitzer, J. Konrad, R. Moser, J. Palm, H. Vogt, H.P. Huber, Prog. Photovolt. Res. Appl. 23(10), 1291 (2014)

    Article  Google Scholar 

  6. S. Zoppel, H. Huber, G.A. Reider, Appl. Phys. A Mater. Sci. Process. 89(1), 161 (2007)

    Article  ADS  Google Scholar 

  7. G. Heise, D. Trappendreher, F. Ilchmann, R.S. Weiss, B. Wolf, H. Huber, J. Appl. Phys. 112(1), 13110 (2012)

    Article  ADS  Google Scholar 

  8. G. Heise, M. Dickmann, M. Domke, A. Heiss, T. Kuznicki, J. Palm, I. Richter, H. Vogt, H. Huber, Appl. Phys. A Mater. Sci. Process. 104(1), 387 (2011)

    Article  ADS  Google Scholar 

  9. S. Hermann, T. Dezhdar, N.P. Harder, R. Brendel, M. Seibt, S. Stroj, J. Appl. Phys. 108(11), 114514 (2010)

    Article  ADS  Google Scholar 

  10. T. Rublack, G. Seifert, Opt. Mater. Express 1(4), 543 (2011)

    Article  Google Scholar 

  11. V.V. Rana, Z. Zhang, Proc. SPIE 7193, 1 (2009)

    Google Scholar 

  12. G. Raciukaitis, M. Brikas, M. Gedvilas, T. Rakickas, Appl. Surf. Sci. 253(15), 6570 (2007)

    Article  ADS  Google Scholar 

  13. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74(1), 19 (2002)

    Article  ADS  Google Scholar 

  14. T. Rublack, M. Schade, M. Muchow, H.S. Leipner, G. Seifert, J. Appl. Phys. 112(2), 023521 (2012)

    Article  ADS  Google Scholar 

  15. S. Hermann, N.P. Harder, R. Brendel, D. Herzog, H. Haferkamp, Appl. Phys. A Mater. Sci. Process. 99(1), 151 (2010)

    Article  ADS  Google Scholar 

  16. P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, R. Brendel, Prog. Photovolt. Res. Appl. 15(6), 521 (2007)

    Article  Google Scholar 

  17. J. Bonse, G. Mann, J. Krüger, M. Marcinkowski, M. Eberstein, Thin Solid Films 542, 420 (2013)

    Article  ADS  Google Scholar 

  18. E.T. Karim, M. Shugaev, C. Wu, Z. Lin, R.F. Hainsey, L.V. Zhigilei, J. Appl. Phys. 115(18), 183501 (2014)

    Article  ADS  Google Scholar 

  19. J. Sotrop, A. Kersch, M. Domke, G. Heise, H.P. Huber, Appl. Phys. A Mater. Sci. Process. 113(2), 397 (2013)

    Article  ADS  Google Scholar 

  20. P. Peyre, R. Fabbro, Opt. Quantum Electron. 27(12), 1213 (1995)

    Google Scholar 

  21. M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Appl. Phys. A Mater. Sci. Process. 109(2), 409 (2012)

    Article  ADS  Google Scholar 

  22. S. Rapp, M. Domke, M. Schmidt, H.P. Huber, Phys. Proc. 41, 734 (2013)

    Article  ADS  Google Scholar 

  23. K. Kumar, K.K.C. Lee, J. Li, J. Nogami, N.P. Kherani, P.R. Herman, Light Sci. Appl. 3(3), e157 (2014)

    Article  Google Scholar 

  24. S. Rapp, G. Heinrich, M. Wollgarten, H.P. Huber, M. Schmidt, J. Appl. Phys. 117(10), 105304 (2015)

    Article  ADS  Google Scholar 

  25. B.N. Chichkov, C. Momma, S. Nolte, F.V. Alvensleben, A. Tuennermann, Appl. Phys. A Mater. Sci. Process. 63(2), 109 (1997)

    Article  ADS  Google Scholar 

  26. A. Rämer, O. Osmani, B. Rethfeld, J. Appl. Phys. 116(5), 053508 (2014)

    Article  ADS  Google Scholar 

  27. H.M. van Driel, Phys. Rev. B 35(15), 8166 (1987)

    Article  ADS  Google Scholar 

  28. G. Heinrich, A. Lawerenz, Sol. Energy Mater. Sol. Cells 120, 317 (2014)

    Article  Google Scholar 

  29. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. 53(4), 1749 (1996)

    Article  ADS  Google Scholar 

  30. K. Kumar, K.K. Lee, J. Li, J. Nogami, P.R. Herman, N.P. Kherani, in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC (2013), p. 1

  31. J.P. McDonald, J.A. Nees, S.M. Yalisove, J. Appl. Phys. 102(6), 63109 (2007)

    Article  Google Scholar 

  32. S. Rapp, G. Heinrich, M. Domke, H.P. Huber, Phys. Proc. 56, 998 (2014)

    Article  ADS  Google Scholar 

  33. M.C. Downer, R.L. Fork, C.V. Shank, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2(4), 595 (1985)

    Article  ADS  Google Scholar 

  34. C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 50(6), 454 (1983)

    Article  ADS  Google Scholar 

  35. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81(1), 224 (1998)

    Article  ADS  Google Scholar 

  36. A.J. Sabbah, D.M. Riffe, Phys. Rev. B 66(16), 1652171 (2002)

    Article  Google Scholar 

  37. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, S.I. Anisimov, Appl. Phys. A Mater. Sci. Process. 79(4–6), 767 (2004)

    Article  ADS  Google Scholar 

  38. S.K. Sundaram, E. Mazur, Nat. Mater. 1(4), 217 (2002)

    Article  ADS  Google Scholar 

  39. P. Lorazo, L. Lewis, M. Meunier, Phys. Rev. Lett. 91(22), 225502/1 (2003)

  40. J.M. Liu, Opt. Lett. 7(5), 196 (1982)

    Article  ADS  Google Scholar 

  41. D.H. Auston, C.V. Shank, P. LeFur, Phys. Rev. Lett. 35(15), 1022 (1975)

    Article  ADS  Google Scholar 

  42. M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Opt. Express 20(9), 10330 (2012)

    Article  ADS  Google Scholar 

  43. R.M.A. Azzam, N.M. Bashra, Ellipsometry and Polarized Light (North-Holland Publishing Company, Amsterdam, 1977)

    Google Scholar 

  44. D. Von Der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154, 1 (2000)

    Article  ADS  Google Scholar 

  45. J. Bonse, G. Bachelier, J. Siegel, J. Solis, H. Sturm, J. Appl. Phys. 103(5), 54910 (2008)

    Article  ADS  Google Scholar 

  46. I. Mingareev, A. Horn, Appl. Phys. A Mater. Sci. Process. 92(4), 917 (2008)

    Article  ADS  Google Scholar 

  47. E.T. Karim, M.V. Shugaev, C. Wu, Z. Lin, H. Matsumoto, M. Conneran, J. Kleinert, R.F. Hainsey, L.V. Zhigilei, Appl. Phys. A 122(4), 407 (2016)

    Article  ADS  Google Scholar 

  48. K.M. Shvarev, B.A. Baum, P.V. Gel’d. Sov. Phys. Solid State 16(11), 2111 (1975)

    Google Scholar 

  49. G. Heinrich, M. Wollgarten, M. Bähr, A. Lawerenz, Appl. Surf. Sci. 278, 265 (2013)

    Article  ADS  Google Scholar 

  50. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B Condens. Matter Mater. Phys. 73(13) (2006)

  51. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985)

    Google Scholar 

  52. J.M. Liu, Appl. Phys. Lett. 39(9), 755 (1981)

    Article  ADS  Google Scholar 

  53. A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, Appl. Phys. Lett. 55(13), 1363 (1989)

    Article  ADS  Google Scholar 

  54. M.D. Lammert, R.J. Schwartz, IEEE Trans. Electron Devices 24(4), 337 (1977). doi:10.1109/T-ED.1977.18738

    Article  ADS  Google Scholar 

  55. A. Knorz, M. Peters, A. Grohe, C. Harmel, R. Preu, Prog. Photovolt. Res. Appl. 17(2), 127 (2009)

    Article  Google Scholar 

  56. M.A. Green, M.J. Keevers, Prog. Photovolt. Res. Appl. 3(3), 189 (1995). doi:10.1002/pip.4670030303

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Bundesministerium für Wirtschaft und Energie (BMWi) in MONOSCRIBE project (Grant No. 0325922A), by the Bayerische Forschungsstiftung in ORGANOLAS Project (Grant No. AZ-1119-14) and by the DFG in “Ellipsometrie” Project (Grant No. HU 1893/2-1). The authors acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative. We thank Michael Kaiser and Christina Schindler from Munich University of Applied Sciences and Gerrit Heinrich from CiS Forschungsinstitut für Mikrosensorik GmbH for their support with sample preparation. Further, we thank Rico Böhme and Richard Grundmüller from Innolas Solutions GmbH, Krailling, Germany, for their valuable discussion regarding the actual industrial laser applications for selective structuring of transparent thin films in photovoltaics’ production lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Rapp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapp, S., Schmidt, M. & Huber, H.P. Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms. Appl. Phys. A 122, 1035 (2016). https://doi.org/10.1007/s00339-016-0571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0571-0

Keywords

Navigation