Structural, electrical, band alignment and charge trapping analysis of nitrogen-annealed Pt/HfO2/p-Si (100) MIS devices

Abstract

Low leakage current density and high relative permittivity (dielectric constant) are the key factor in order to replace the SiO2 from Si-based technology toward its further downscaling. HfO2 thin films received significant attention due to its excellent optoelectronic properties. In this work, ultra-thin (17 nm) HfO2 films on Si substrate are fabricated by RF sputtering. As deposited films are amorphous in nature and in order to get the reasonable high dielectric constant, the films are annealed (700 °C, 30 min) in nitrogen environment. A high refractive index (2.08) and small grain size (~10) nm were extracted from ellipsometry and XRD, respectively. The AFM study revealed a small RMS surface roughness 9 Å. For electrical characterization, films are integrated in metal–insulator–semiconductor capacitors structure. The oxide capacitance (C ox), flat band capacitance (C FB), flat band voltage (V FB), and oxide-trapped charges (Q ot) calculated from high-frequency (1 MHz) CV curve are 490, 241 pF, 1.21 V and 1.8 × 1012 cm−2, respectively. The dielectric constant calculated from accumulation capacitance is 17. The films show a low leakage current density 6.8 × 10−9 A/cm2 at +1 V, and this is due to the reduction in oxygen vacancies concentration as we performed annealing in N2 environment. The band gap of the films is estimated from O 1s loss spectra and found 5.7 eV. The electron affinity (χ) and HfO2/Si barrier height (conduction band offset) extracted from UPS spectra are 1.88 and 2.17 eV, respectively. A trap state with 0.99 eV activation energy below the conduction band edge is found and assigned to the fourfold coordinated oxygen vacancy in m-HfO2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    ADS  Article  Google Scholar 

  2. 2.

    A. Kumar, S. Mondal, K.S.R.K. Rao, AIP Adv. 5, 117122 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    S. Mondal, V. Venkataraman, IEEE Electron Dev. Lett. 37, 396 (2016)

    ADS  Article  Google Scholar 

  4. 4.

    V. Fiorentini, G. Gulleri, Phys. Rev. Lett. 89, 266101 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    P.K. Nayak, J.A. Caraveo-Frescas, Z. Wang, M.N. Hedhili, Q.X. Wang, H.N. Alshareef, Sci Rep 4, 4672 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    M. Esro, G. Vourlias, C. Somerton, W.I. Milne, G. Adamopoulos, Adv. Funct. Mater. 25, 134 (2015)

    Article  Google Scholar 

  7. 7.

    H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, Y. Jiang, Appl. Phys. Lett. 93, 20 (2008)

    Google Scholar 

  8. 8.

    K.L. Ganapathi, N. Bhat, S. Mohan, Appl. Phys. Lett. 103, 1 (2013)

    Google Scholar 

  9. 9.

    J. Gao, G. He, J.W. Zhang, B. Deng, Y.M. Liu, J. Alloys Compd. 647, 322 (2015)

    Article  Google Scholar 

  10. 10.

    I. Park, Y. Choi, W.T. Nichols, J. Ahn, Appl. Phys. Lett. 98, 19 (2011)

    Google Scholar 

  11. 11.

    D. Lembke, A. Kis, ACS Nano 6, 11 (2012)

    Article  Google Scholar 

  12. 12.

    I. Karaduman, Ö. Barin, D.E. Yıldız, S. Acar, J. Appl. Phys. 118, 1 (2015)

    Article  Google Scholar 

  13. 13.

    I. Oh, J. Tanskanen, H. Jung, K. Kim, M.J. Lee, Z. Lee, S. Lee, J. Ahn, C.W. Lee, K. Kim, H. Kim, H. Lee, Chem. Mater. 27, 5868 (2015)

    Article  Google Scholar 

  14. 14.

    K. Zou, X. Hong, D. Keefer, J. Zhu, Phys. Rev. Lett. 105, 1 (2010)

    Article  Google Scholar 

  15. 15.

    M. Liao, H. Ishiwara, S.I. Ohmi, IEEE Trans. Electron Dev. 61, 2 (2014)

    Article  Google Scholar 

  16. 16.

    X.-H. Zhang, S.P. Tiwari, S.-J. Kim, B. Kippelen, Appl. Phys. Lett. 95, 223302 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    W.-J. Yoon, P.R. Berger, Org. Electron. 11, 1719 (2010)

    Article  Google Scholar 

  18. 18.

    R. Zhang, P. Huang, N. Taoka, M. Yokoyama, M. Takenaka, S. Takagi, Appl. Phys. Lett. 052903, 3 (2016)

    Google Scholar 

  19. 19.

    J.S. Meena, M.-C. Chu, S.-W. Kuo, F.-C. Chang, F.-H. Ko, Phys. Chem. Chem. Phys. 12, 2582 (2010)

    Article  Google Scholar 

  20. 20.

    Y. Wang, H. Wang, C. Ye, J. Zhang, H. Wang, Y. Jiang, A.C.S. Appl, Mater. Interfaces 3, 3813 (2011)

    Article  Google Scholar 

  21. 21.

    G.S. Chaubey, Y. Yao, J.P.A. Makongo, P. Sahoo, D. Misra, P.F.P. Poudeu, J.B. Wiley, RSC Adv. 2, 9207 (2012)

    Article  Google Scholar 

  22. 22.

    J.M. Chem, C. Avis, Y.G. Kim, J. Jang, J. Mater. Chem. 22, 17415 (2012)

    Article  Google Scholar 

  23. 23.

    L. Qi, B. Cheng, J. Yu, W. Ho, J. Hazard. Mater. 301, 522 (2015)

    Article  Google Scholar 

  24. 24.

    J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, Y. Koide, Sci. Rep. 4, 6395 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    M.T. Nichols, W. Li, D. Pei, G.A. Antonelli, Q. Lin, S. Banna, Y. Nishi, J.L. Shohet, J. Appl. Phys. 115, 094105 (2014)

    ADS  Article  Google Scholar 

  26. 26.

    T.-J. Chen, C.-L. Kuo, J. Appl. Phys. 110, 064105 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    M.C. Cheynet, S. Pokrant, F.D. Tichelaar, J. Rouvière, J. Appl. Phys. 101, 1 (2007)

    Article  Google Scholar 

  28. 28.

    Z.Q. Liu, W.K. Chim, S.Y. Chiam, J.S. Pan, C.M. Ng, J. Mater. Chem. 22, 17887 (2012)

    Article  Google Scholar 

  29. 29.

    H. Borkar, A. Thakre, S.S. Kushvaha, R.P. Aloysius, A. Kumar, RSC Adv. 5, 35046 (2015)

    Article  Google Scholar 

  30. 30.

    Y.-C. Yeo, T.-J. King, C. Hu, J. Appl. Phys. 92, 7266 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    M. Jerman, Z. Qiao, D. Mergel, Appl. Opt. 44, 3006 (2005)

    ADS  Article  Google Scholar 

  32. 32.

    A. Kumar, S. Mondal, K.S.R.K. Rao, J. Mater. Sci.: Mater. Electron. 27, 5264 (2016)

    Google Scholar 

  33. 33.

    A. Kumar, S. Mondal, K.S.R.K. Rao, Appl. Surf. Sci. 370(373), 373 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    S.M. Sze, The Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), pp. 402–406

    Google Scholar 

  35. 35.

    M. Jain, J.R. Chelikowsky, S.G. Louie, Phys. Rev. Lett. 107, 1 (2011)

    Google Scholar 

  36. 36.

    K. Xiong, J. Robertson, M.C. Gibson, S.J. Clark, Appl. Phys. Lett. 87, 183505 (2005)

    ADS  Article  Google Scholar 

  37. 37.

    P. Broqvist, A. Alkauskas, A. Pasquarello, Appl. Phys. Lett. 92, 132911 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    J. Ni, Q. Zhou, Z. Li, Z. Zhang, Appl. Phys. Lett. 93, 011905 (2008)

    ADS  Article  Google Scholar 

  39. 39.

    K. Suzuki, K. Kato, J. Appl. Phys. 105, 1 (2009)

    Google Scholar 

Download references

Acknowledgements

AK would like to thank UGC, New Delhi, for the research fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mondal, S. & Rao, K.S.R.K. Structural, electrical, band alignment and charge trapping analysis of nitrogen-annealed Pt/HfO2/p-Si (100) MIS devices. Appl. Phys. A 122, 1027 (2016). https://doi.org/10.1007/s00339-016-0569-7

Download citation

Keywords

  • HfO2
  • Pentacene
  • Leakage Current Density
  • Conduction Band Edge
  • Oxygen Vacancy Concentration