Skip to main content
Log in

Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Panda, S. Ramakrishna, J. Mater. Sci. 42, 2189 (2007)

    Article  ADS  Google Scholar 

  2. J.Y. Park, S.S. Kim, Met. Mater. Int. 15, 95 (2009)

    Article  Google Scholar 

  3. C. Wang, Y. Tong, Z. Sun, Y. Xin, E. Yan, Z. Huang, Mater. Lett. 61, 5125 (2007)

    Article  Google Scholar 

  4. W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, J.C. Nino, J. Am. Ceram. Soc. 89, 395 (2006)

    Article  Google Scholar 

  5. T. Lavanya, K. Stheesh, M. Dutta, N.V. Jaya, N. Fukata, J. Alloys Compd. 615, 643 (2014)

    Article  Google Scholar 

  6. H. Wu, W. Pan, D. Lin, H. Li, J. Adv. Ceram. 1, 2 (2012)

    Article  Google Scholar 

  7. G.K. Meenashisundaram, M.H. Nai, A. Almajid, K.A. Khalil, H.S. Abdo, M. Gupta, J. Alloys Compd. 664, 45 (2016)

    Article  Google Scholar 

  8. M. Samadi, H.A. Shivaee, M. Zanetti, A. Pourjavadi, A. Moshfegh, J. Mol. Catal. A Chem. 359, 42 (2012)

    Article  Google Scholar 

  9. Y. Dong, T. Mosaval, H.J. Haroosh, R. Umer, H. Takagi, K.T. Lau, J. Polym. Sci. Part B Polym. Phys. 52, 618 (2014)

    Article  ADS  Google Scholar 

  10. S.H. Nam, H.S. Shim, Y.S. Kim, M.A. Dar, J.G. Kim, W.B. Kim, ACS Appl. Mater. Interfaces 2, 2046 (2010)

    Article  Google Scholar 

  11. R. Zhang, H. Wu, D. Lin, W. Pan, J. Am. Ceram. Soc. 93, 605 (2010)

    Article  Google Scholar 

  12. S.J. Doh, C. Kim, S.G. Lee, S.J. Lee, H. Kim, J. Hazard. Mater. 154, 118 (2008)

    Article  Google Scholar 

  13. D.V. Bavykin, F.C. Walsh, Titanate and Titania Nanotubes Synthesis, Properties and Applications (The Royal Society of Chemistry, Cambridge, 2010)

    Google Scholar 

  14. J.A. Park, J. Moon, S.J. Lee, S.H. Kim, T. Zyung, H.Y. Chu, Thin Solid Films 518, 6642 (2010)

    Article  ADS  Google Scholar 

  15. J. Zhao, Y. Yang, C. Cui, H. Hu, Y. Zhang, J. Xu, B. Lu, L. Xu, J. Pan, W. Tang, J. Alloys Compd. 663, 211 (2016)

    Article  Google Scholar 

  16. Y. Li, J. Luo, X. Hu, X. Wang, J. Liang, K. Yu, J. Alloys Compd. 651, 685 (2015)

    Article  Google Scholar 

  17. D.A. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  ADS  Google Scholar 

  18. D.W. Kim, N. Enomoto, Z. Nakagawa, K. Kawamura, J. Am. Ceram. Soc. 79, 1095 (1996)

    Article  Google Scholar 

  19. H. Albetran, H. Haroosh, Y. Dong, V.M. Prida, B.H. O’Connor, I.M. Low, Appl. Phys. A 116, 161 (2014)

    Article  ADS  Google Scholar 

  20. H. Albetran, B.H. O’Connor, I.M. Low, Appl. Phys. A 122, 367 (2016)

    Article  ADS  Google Scholar 

  21. K. Eufinger, D. Poelman, H. Poelman, R.D. Gryse, G.B. Marin, Appl. Surf. Sci. 254, 148 (2007)

    Article  ADS  Google Scholar 

  22. C. Yu, L. Wei, X. Li, J. Chen, Q. Fan, J.C. Yu, Mater. Sci. Eng. B 178, 344 (2013)

    Article  Google Scholar 

  23. V.J. Babu, A.S. Nair, Z. Peining, Mater. Lett. 65, 3064 (2011)

    Article  Google Scholar 

  24. Y. Cheng, M. Zhang, G. Yao, L. Yang, J. Tao, Z. Gong, G. He, Z. Sun, J. Alloys Compd. 662, 179 (2016)

    Article  Google Scholar 

  25. C. Liu, L. Zhang, R. Liu, Z. Gao, X. Yang, Z. Tu, F. Yang, Z. Ye, L. Cui, C. Xu, Y. Li, J. Alloys Compd. 656, 24 (2016)

    Article  Google Scholar 

  26. P. Zhang, X. Li, X. Wu, T. Zhao, L. Wen, J. Alloys Compd. 673, 405 (2016)

    Article  Google Scholar 

  27. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, M. Anpo, Catal. Today 84, 191 (2003)

    Article  Google Scholar 

  28. G. Impellizzeri, V. Scuderi, L. Romano, P.M. Sberna, E. Arcadipane, R. Sanz, M. Scuderi, G. Nicotra, M. Bayle, R. Carles, F. Simone, V. Privitera, J. Appl. Phys. 116, 173507 (2014)

    Article  ADS  Google Scholar 

  29. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, J. Photochem. Photobiol. A Chem. 148, 257 (2002)

    Article  Google Scholar 

  30. M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh, N. Iwamoto, Catal. Lett. 67, 135 (2000)

    Article  Google Scholar 

  31. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano Lett. 6, 1080 (2006)

    Article  ADS  Google Scholar 

  32. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  Google Scholar 

  33. I.M. Low, H. Albetran, V.M. Prida, V. Vega, P. Manurung, M. Ionescu, J. Mater. Res. 28, 304 (2013)

    Article  ADS  Google Scholar 

  34. H. Albetran, B.H. O’Connor, V.M. Prida, I.M. Low, Appl. Phys. A 120, 623 (2015)

    Article  ADS  Google Scholar 

  35. H. Albetran, I.M. Low, J. Mater. Res. 31, 1588 (2016)

    Article  ADS  Google Scholar 

  36. K. Matusita, T. Komatsu, R. Yokota, J. Mater. Sci. 19, 291 (1984)

    Article  ADS  Google Scholar 

  37. H. Albetran, Y. Dong, I.M. Low, J. Asian. Ceram. Soc. 3, 292 (2015)

    Article  Google Scholar 

  38. E. Kisi, Mater. Forum 18, 135 (1994)

    Google Scholar 

  39. K.N.P. Kumar, K. Keizer, A.J. Burggraaf, J. Mater. Chem. 3, 1141 (1993)

    Article  Google Scholar 

  40. K.N.P. Kumar, K. Keizer, A.J. Burggraaf, J. Mater. Chem. 3, 917 (1993)

    Article  Google Scholar 

  41. K.N. Kumar, J. Engell, J. Kumar, K. Keizer, T. Okubo, M. Sadakata, J. Mater. Sci. Lett. 14, 1784 (1995)

    Article  Google Scholar 

  42. O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, J. Mater. Res. 18, 156 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Australian Synchrotron (Powder Diffraction Beamline) (AS122/PDFI/5075) and the Australian Institute of Nuclear Science and Engineering (ALNGRA11135). The authors would like to thank E/Prof. B. O’Connor for critical discussions on the data analysis; Dr. Y. Dong for use of the electrospinning machine; Ms. E. Miller for assistance with SEM imaging; Dr. X. Wang for assistance with TEM; Dr. J. Kimpton at the Australian Synchrotron for advice on the use of instrumentation at powder diffraction beamline; and Dr. M. Ionescu of the Australian Nuclear Science and Technology Organization for helpful assistance with ion implantation, SRIM simulation, and the analysis of RBS results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Low.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albetran, H., Low, I.M. Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers. Appl. Phys. A 122, 1044 (2016). https://doi.org/10.1007/s00339-016-0568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0568-8

Keywords

Navigation