Skip to main content
Log in

Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline lead-free (1 − x)(K0.5Na0.5)(Nb0.995Mn0.005O3)–xCuO ceramics where 0 ≤ x ≤ 2% were synthesized using the conventional solid-state reaction method. X-ray diffraction analysis confirmed the presence of single-phase possessing monoclinic symmetry for all the synthesized compositions. Scanning electron microscopy revealed a dense microstructure along with increase in grains size with Cu doping in the KNNMn ceramics. Impedance spectroscopy (IS) showed that Cu doping was found to be helpful in increasing the grain boundary resistance. A temperature-dependent and non-Debye-type relaxation process was also revealed by IS studies. The relaxation time for both bulk and grain boundary decreased with temperature indicating a hopping conduction mechanism. The activation energy was found to be 0.4–0.5 eV, indicating conduction of oxygen vacancies through hopping mechanism. Insights gained from this work could be useful in designing the optimum composition and microstructure of KNN-based ceramics for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Saito et al., Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)

    Article  ADS  Google Scholar 

  2. J. Rödel et al., Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  3. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceram. Int. 41((9 Part A)), 11436–11444 (2015)

    Article  Google Scholar 

  4. M.A. Rafiq, M.E.V. Costa, P.M. Vilarinho, Establishing the domain structure of (K0.5Na0.5)NbO3 (KNN) single crystals by piezoforce-response microscopy. Sci. Adv. Mater. 6(3), 426–433 (2014)

    Article  Google Scholar 

  5. D. Berlincourt, Piezoelectric crystals and ceramics, in Ultrasonic Transducer Materials, ed. by O.E. Mattiat (Springer, Berlin, 1971), pp. 63–124

    Chapter  Google Scholar 

  6. T. Tadashi, M. Kei-ichi, S. Koichiro, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30(9S), 2236 (1991)

    ADS  Google Scholar 

  7. R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium niobates. J. Am. Ceram. Soc. 45(5), 209–213 (1962)

    Article  Google Scholar 

  8. T. Shrout, S. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19(1), 113–126 (2007)

    Article  Google Scholar 

  9. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)

    Article  Google Scholar 

  10. P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics 474(1), 128–143 (2015)

    Article  Google Scholar 

  11. J. Tellier et al., Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci. 11(2), 320–324 (2009)

    Article  ADS  Google Scholar 

  12. W. Ge et al., A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3−x%LiNbO3 solid solution. J. Appl. Phys. 111(10), 103503 (2012)

    Article  ADS  Google Scholar 

  13. S. Zhang et al., Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 100(10), 104108 (2006)

    Article  ADS  Google Scholar 

  14. Y. Guo, K.-I. Kakimoto, H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2–3), 241–244 (2005)

    Article  Google Scholar 

  15. Y. Dai, X. Zhang, G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl. Phys. Lett. 90(26), 262903 (2007)

    Article  ADS  Google Scholar 

  16. Y. Chang et al., Effects of Li content on the phase structure and electrical properties of lead-free (K0.46−x/2Na0.54−x/2Li x )(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett. 90(23), 232905 (2007)

    Article  ADS  Google Scholar 

  17. E.K. Akdoğan et al., Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)–(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92(11), 112908 (2008)

    Article  ADS  Google Scholar 

  18. M. Rafiq et al., Transmission electron microscopy of Mn-doped KNN ceramics. Microsc. Microanal. 19(S4), 99–100 (2013)

    Article  ADS  Google Scholar 

  19. R. Pinho, M. Asif, M.E. Costa, P.M. Vilarinho, Texturization of potassium sodium niobate (KNN) ceramics in the presence of CuO and MnO. Microsc. Microanal. 21(S6), 130 (2015)

    Article  ADS  Google Scholar 

  20. P. Seung-Ho et al., Microstructure and piezoelectric properties of ZnO-added (Na0.5 K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43(8B), L1072 (2004)

    Article  ADS  Google Scholar 

  21. H.-Y. Park et al., Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91(7), 2374–2377 (2008)

    Article  Google Scholar 

  22. M. Matsubara et al., Processing and piezoelectric properties of lead-free (K, Na) (Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 88(5), 1190–1196 (2005)

    Article  Google Scholar 

  23. X. Wang et al., Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)

    Article  Google Scholar 

  24. K.G. Webber, R. Zuo, C.S. Lynch, Ceramic and single-crystal (1−x)PMN–xPT constitutive behavior under combined stress and electric field loading. Acta Mater. 56(6), 1219–1227 (2008)

    Article  Google Scholar 

  25. K. Diouma et al., Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals. J. Phys. D Appl. Phys. 40(9), 2920 (2007)

    Article  Google Scholar 

  26. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989)

    Article  ADS  Google Scholar 

  27. J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy, in Impedance Spectroscopy, ed. by E. Barsoukov, J.R. Macdonald (Wiley, New York, 2005), pp. 1–26

    Chapter  Google Scholar 

  28. J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng., B 55(1–2), 114–118 (1998)

    Article  Google Scholar 

  29. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. I. Coondoo et al., Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R = La, Nd] ceramics. Ceram. Int. 40(7), 9895–9902 (2014)

    Article  Google Scholar 

  31. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: Theory, experiment, and applications (Wiley, New York, 2005)

    Book  Google Scholar 

  32. S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87(2–3), 256–263 (2004)

    Article  Google Scholar 

  33. A.K. Jonscher, The /‘universal/’ dielectric response. Nature 267(5613), 673–679 (1977)

    Article  ADS  Google Scholar 

  34. M.A. Rafiq et al., Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17(37), 24403–24411 (2015)

    Article  Google Scholar 

  35. K. Srinivas, A.R. James, Dielectric characterization of polycrystalline Sr2Bi4Ti5O18. J. Appl. Phys. 86(7), 3885–3889 (1999)

    Article  ADS  Google Scholar 

  36. A. Srivastava, A. Garg, F.D. Morrison, Impedance spectroscopy studies on polycrystalline BiFeO3 thin films on Pt/Si substrates. J. Appl. Phys. 105(5), 054103 (2009)

    Article  ADS  Google Scholar 

  37. A. Peláiz-Barranco et al., Ionized oxygen vacancy-related electrical conductivity in (Pb1−x La x )(Zr0.90Ti0.10) 1−x/4 O3 ceramics. J. Phys. D Appl. Phys. 41(21), 215503 (2008)

    Article  ADS  Google Scholar 

  38. A. Peláiz-Barranco, J. Guerra, Dielectric relaxation related to single-ionized oxygen vacancies in (Pb 1−x La x)(Zr0.90Ti0.10) 1−x/4 O3 ceramics. Mater. Res. Bull. 45(9), 1311–1313 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Rafiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, A., Rafiq, M.A., Rafiq, M.N. et al. Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122, 1037 (2016). https://doi.org/10.1007/s00339-016-0564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0564-z

Keywords

Navigation