Abstract
Polycrystalline lead-free (1 − x)(K0.5Na0.5)(Nb0.995Mn0.005O3)–xCuO ceramics where 0 ≤ x ≤ 2% were synthesized using the conventional solid-state reaction method. X-ray diffraction analysis confirmed the presence of single-phase possessing monoclinic symmetry for all the synthesized compositions. Scanning electron microscopy revealed a dense microstructure along with increase in grains size with Cu doping in the KNNMn ceramics. Impedance spectroscopy (IS) showed that Cu doping was found to be helpful in increasing the grain boundary resistance. A temperature-dependent and non-Debye-type relaxation process was also revealed by IS studies. The relaxation time for both bulk and grain boundary decreased with temperature indicating a hopping conduction mechanism. The activation energy was found to be 0.4–0.5 eV, indicating conduction of oxygen vacancies through hopping mechanism. Insights gained from this work could be useful in designing the optimum composition and microstructure of KNN-based ceramics for practical applications.









Similar content being viewed by others
References
Y. Saito et al., Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)
J. Rödel et al., Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)
M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceram. Int. 41((9 Part A)), 11436–11444 (2015)
M.A. Rafiq, M.E.V. Costa, P.M. Vilarinho, Establishing the domain structure of (K0.5Na0.5)NbO3 (KNN) single crystals by piezoforce-response microscopy. Sci. Adv. Mater. 6(3), 426–433 (2014)
D. Berlincourt, Piezoelectric crystals and ceramics, in Ultrasonic Transducer Materials, ed. by O.E. Mattiat (Springer, Berlin, 1971), pp. 63–124
T. Tadashi, M. Kei-ichi, S. Koichiro, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30(9S), 2236 (1991)
R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium niobates. J. Am. Ceram. Soc. 45(5), 209–213 (1962)
T. Shrout, S. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19(1), 113–126 (2007)
J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)
P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics 474(1), 128–143 (2015)
J. Tellier et al., Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci. 11(2), 320–324 (2009)
W. Ge et al., A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3−x%LiNbO3 solid solution. J. Appl. Phys. 111(10), 103503 (2012)
S. Zhang et al., Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 100(10), 104108 (2006)
Y. Guo, K.-I. Kakimoto, H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2–3), 241–244 (2005)
Y. Dai, X. Zhang, G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl. Phys. Lett. 90(26), 262903 (2007)
Y. Chang et al., Effects of Li content on the phase structure and electrical properties of lead-free (K0.46−x/2Na0.54−x/2Li x )(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett. 90(23), 232905 (2007)
E.K. Akdoğan et al., Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)–(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92(11), 112908 (2008)
M. Rafiq et al., Transmission electron microscopy of Mn-doped KNN ceramics. Microsc. Microanal. 19(S4), 99–100 (2013)
R. Pinho, M. Asif, M.E. Costa, P.M. Vilarinho, Texturization of potassium sodium niobate (KNN) ceramics in the presence of CuO and MnO. Microsc. Microanal. 21(S6), 130 (2015)
P. Seung-Ho et al., Microstructure and piezoelectric properties of ZnO-added (Na0.5 K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43(8B), L1072 (2004)
H.-Y. Park et al., Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91(7), 2374–2377 (2008)
M. Matsubara et al., Processing and piezoelectric properties of lead-free (K, Na) (Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 88(5), 1190–1196 (2005)
X. Wang et al., Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)
K.G. Webber, R. Zuo, C.S. Lynch, Ceramic and single-crystal (1−x)PMN–xPT constitutive behavior under combined stress and electric field loading. Acta Mater. 56(6), 1219–1227 (2008)
K. Diouma et al., Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals. J. Phys. D Appl. Phys. 40(9), 2920 (2007)
D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989)
J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy, in Impedance Spectroscopy, ed. by E. Barsoukov, J.R. Macdonald (Wiley, New York, 2005), pp. 1–26
J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng., B 55(1–2), 114–118 (1998)
R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)
I. Coondoo et al., Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R = La, Nd] ceramics. Ceram. Int. 40(7), 9895–9902 (2014)
E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: Theory, experiment, and applications (Wiley, New York, 2005)
S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87(2–3), 256–263 (2004)
A.K. Jonscher, The /‘universal/’ dielectric response. Nature 267(5613), 673–679 (1977)
M.A. Rafiq et al., Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17(37), 24403–24411 (2015)
K. Srinivas, A.R. James, Dielectric characterization of polycrystalline Sr2Bi4Ti5O18. J. Appl. Phys. 86(7), 3885–3889 (1999)
A. Srivastava, A. Garg, F.D. Morrison, Impedance spectroscopy studies on polycrystalline BiFeO3 thin films on Pt/Si substrates. J. Appl. Phys. 105(5), 054103 (2009)
A. Peláiz-Barranco et al., Ionized oxygen vacancy-related electrical conductivity in (Pb1−x La x )(Zr0.90Ti0.10) 1−x/4 O3 ceramics. J. Phys. D Appl. Phys. 41(21), 215503 (2008)
A. Peláiz-Barranco, J. Guerra, Dielectric relaxation related to single-ionized oxygen vacancies in (Pb 1−x La x)(Zr0.90Ti0.10) 1−x/4 O3 ceramics. Mater. Res. Bull. 45(9), 1311–1313 (2010)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Kamal, A., Rafiq, M.A., Rafiq, M.N. et al. Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122, 1037 (2016). https://doi.org/10.1007/s00339-016-0564-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-016-0564-z


