Applied Physics A

, 122:1037 | Cite as

Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics

  • Ahmed Kamal
  • Muhammad Asif RafiqEmail author
  • Muhammad Nadeem Rafiq
  • Muhammad Usman
  • Moaz Waqar
  • Muhammad Sabieh Anwar


Polycrystalline lead-free (1 − x)(K0.5Na0.5)(Nb0.995Mn0.005O3)–xCuO ceramics where 0 ≤ x ≤ 2% were synthesized using the conventional solid-state reaction method. X-ray diffraction analysis confirmed the presence of single-phase possessing monoclinic symmetry for all the synthesized compositions. Scanning electron microscopy revealed a dense microstructure along with increase in grains size with Cu doping in the KNNMn ceramics. Impedance spectroscopy (IS) showed that Cu doping was found to be helpful in increasing the grain boundary resistance. A temperature-dependent and non-Debye-type relaxation process was also revealed by IS studies. The relaxation time for both bulk and grain boundary decreased with temperature indicating a hopping conduction mechanism. The activation energy was found to be 0.4–0.5 eV, indicating conduction of oxygen vacancies through hopping mechanism. Insights gained from this work could be useful in designing the optimum composition and microstructure of KNN-based ceramics for practical applications.


Oxygen Vacancy Boundary Resistance Impedance Spectroscopy Space Charge Polarization Ionize Oxygen Vacancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Y. Saito et al., Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    J. Rödel et al., Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRefGoogle Scholar
  3. 3.
    M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceram. Int. 41((9 Part A)), 11436–11444 (2015)CrossRefGoogle Scholar
  4. 4.
    M.A. Rafiq, M.E.V. Costa, P.M. Vilarinho, Establishing the domain structure of (K0.5Na0.5)NbO3 (KNN) single crystals by piezoforce-response microscopy. Sci. Adv. Mater. 6(3), 426–433 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Berlincourt, Piezoelectric crystals and ceramics, in Ultrasonic Transducer Materials, ed. by O.E. Mattiat (Springer, Berlin, 1971), pp. 63–124CrossRefGoogle Scholar
  6. 6.
    T. Tadashi, M. Kei-ichi, S. Koichiro, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30(9S), 2236 (1991)ADSGoogle Scholar
  7. 7.
    R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium niobates. J. Am. Ceram. Soc. 45(5), 209–213 (1962)CrossRefGoogle Scholar
  8. 8.
    T. Shrout, S. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19(1), 113–126 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)CrossRefGoogle Scholar
  10. 10.
    P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics 474(1), 128–143 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Tellier et al., Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci. 11(2), 320–324 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    W. Ge et al., A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3−x%LiNbO3 solid solution. J. Appl. Phys. 111(10), 103503 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Zhang et al., Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 100(10), 104108 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Guo, K.-I. Kakimoto, H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2–3), 241–244 (2005)CrossRefGoogle Scholar
  15. 15.
    Y. Dai, X. Zhang, G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl. Phys. Lett. 90(26), 262903 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Chang et al., Effects of Li content on the phase structure and electrical properties of lead-free (K0.46−x/2Na0.54−x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett. 90(23), 232905 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    E.K. Akdoğan et al., Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)–(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92(11), 112908 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M. Rafiq et al., Transmission electron microscopy of Mn-doped KNN ceramics. Microsc. Microanal. 19(S4), 99–100 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    R. Pinho, M. Asif, M.E. Costa, P.M. Vilarinho, Texturization of potassium sodium niobate (KNN) ceramics in the presence of CuO and MnO. Microsc. Microanal. 21(S6), 130 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    P. Seung-Ho et al., Microstructure and piezoelectric properties of ZnO-added (Na0.5 K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43(8B), L1072 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    H.-Y. Park et al., Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91(7), 2374–2377 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Matsubara et al., Processing and piezoelectric properties of lead-free (K, Na) (Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 88(5), 1190–1196 (2005)CrossRefGoogle Scholar
  23. 23.
    X. Wang et al., Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)CrossRefGoogle Scholar
  24. 24.
    K.G. Webber, R. Zuo, C.S. Lynch, Ceramic and single-crystal (1−x)PMN–xPT constitutive behavior under combined stress and electric field loading. Acta Mater. 56(6), 1219–1227 (2008)CrossRefGoogle Scholar
  25. 25.
    K. Diouma et al., Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals. J. Phys. D Appl. Phys. 40(9), 2920 (2007)CrossRefGoogle Scholar
  26. 26.
    D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy, in Impedance Spectroscopy, ed. by E. Barsoukov, J.R. Macdonald (Wiley, New York, 2005), pp. 1–26CrossRefGoogle Scholar
  28. 28.
    J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng., B 55(1–2), 114–118 (1998)CrossRefGoogle Scholar
  29. 29.
    R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Coondoo et al., Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R = La, Nd] ceramics. Ceram. Int. 40(7), 9895–9902 (2014)CrossRefGoogle Scholar
  31. 31.
    E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: Theory, experiment, and applications (Wiley, New York, 2005)CrossRefGoogle Scholar
  32. 32.
    S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87(2–3), 256–263 (2004)CrossRefGoogle Scholar
  33. 33.
    A.K. Jonscher, The /‘universal/’ dielectric response. Nature 267(5613), 673–679 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    M.A. Rafiq et al., Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17(37), 24403–24411 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Srinivas, A.R. James, Dielectric characterization of polycrystalline Sr2Bi4Ti5O18. J. Appl. Phys. 86(7), 3885–3889 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    A. Srivastava, A. Garg, F.D. Morrison, Impedance spectroscopy studies on polycrystalline BiFeO3 thin films on Pt/Si substrates. J. Appl. Phys. 105(5), 054103 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    A. Peláiz-Barranco et al., Ionized oxygen vacancy-related electrical conductivity in (Pb1−x Lax)(Zr0.90Ti0.10) 1−x/4 O3 ceramics. J. Phys. D Appl. Phys. 41(21), 215503 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    A. Peláiz-Barranco, J. Guerra, Dielectric relaxation related to single-ionized oxygen vacancies in (Pb 1−x La x)(Zr0.90Ti0.10) 1−x/4 O3 ceramics. Mater. Res. Bull. 45(9), 1311–1313 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ahmed Kamal
    • 1
  • Muhammad Asif Rafiq
    • 1
    Email author
  • Muhammad Nadeem Rafiq
    • 2
  • Muhammad Usman
    • 3
  • Moaz Waqar
    • 1
  • Muhammad Sabieh Anwar
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of Engineering and Technology LahoreLahorePakistan
  2. 2.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  3. 3.Department of Physics, Syed Babar Ali School of Science and EngineeringLahore University of Management Sciences (LUMS)LahorePakistan

Personalised recommendations