Skip to main content
Log in

A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Frerichs, J. Stricker, D.A. Wesner, E.W. Kreutz, Surf. Sci. 86, 405 (1995). doi:10.1016/0169-4332(94)00431-5

    Article  ADS  Google Scholar 

  2. H. Horn, S. Beil, D.A. Wesner, R. Weichenhain, E.W. Kreutz, Nuclear Instruments and Methods in Physics Research. Sect. B Beam Interact. Mater. Atoms 151, 279 (1999). doi:10.1016/S0168-583X(99)00074-9

    Article  Google Scholar 

  3. F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, Appl. Phys. A: Mater. Sci. Process. 68(6), 709 (1999). doi:10.1007/s003390050965

    Article  ADS  Google Scholar 

  4. M. Charbonnier, M. Romand, Int. J. Adhes. Adhes. 23(4), 277 (2003). doi:10.1016/S0143-7496(03)00045-9

  5. Y. Zhang, H.N. Hansen, A. De Grave, P.T. Tang, J.S. Nielsen, Int. J. Adv. Manuf. Technol. 55(5-8), 573 (2011). doi:10.1007/s00170-010-3051-2

  6. M. Ozdemir, H. Sadikoglu, Trends Food Sci. Technol. 9, 159 (1998). doi:10.1016/S0924-2244(98)00035-1

    Article  Google Scholar 

  7. E. Håkansson, T. Lin, H. Wang, A. Kaynak, Synth. Metals 156(18-20), 1194 (2006). doi:10.1016/j.synthmet.2006.08.006. http://www.sciencedirect.com/science/article/pii/S0379677906001962

  8. K. Zelenska, S. Zelensky, L. Poperenko, K. Kanev, V. Mizeikis, V. Gnatyuk, Opt. Laser Technol. 76, 96 (2016). http://www.sciencedirect.com/science/article/pii/S0030399215002121

  9. R.S. Kappes, F. Schönfeld, C. Li, J.S. Gutmann, H.J. Butt, Appl. Phys. A 106(4), 791 (2012). doi:10.1007/s0039-011-6715-3

    Article  ADS  Google Scholar 

  10. R.S. Kappes, F. Schönfeld, C. Li, A.A. Golriz, M. Nagel, T. Lippert, H.J. Butt, J.S. Gutmann, SpringerPlus 3(1), 489 (2014). doi:10.1186/2193-1801-3-489

    Article  Google Scholar 

  11. H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, J. Troe, J. Appl. Phys. 83(10), 5458 (1998). doi:10.1063/1.367377

  12. H. Schmidt, J. Ihlemann, K. Luther, J. Troe, Appl. Surf. Sci. 138–139, 102 (1999)

    Article  Google Scholar 

  13. N. Arnold, N. Bityurin, Appl. Phys. A 68, 615 (1999). doi:10.1007/s003399900051

    Article  ADS  Google Scholar 

  14. N. Bityurin, N. Arnold, B. Luk’yanchuk, D. Bäuerle, Appl. Surf. Sci. 127–129, 164 (1998). doi:10.1016/S0169-4332(97)00627-2

    Article  Google Scholar 

  15. N. Bityurin, B.S. Luk’yanchuk, M.H. Hong, T.C. Chong, Chem. Rev. 103(2), 519 (2003). doi:10.1021/cr010426b

    Article  Google Scholar 

  16. B.J. Garrison, R. Srinivasan, J. Appl. Phys. 57(8), 2909 (1985). doi:10.1063/1.335230. http://scitation.aip.org/content/aip/journal/jap/57/8/10.1063/1.335230

  17. T. Lippert, A. Yabe, A. Wokaun, Adv. Mater. 9(2), 105 (1997). doi:10.1002/adma.19970090203

    Article  Google Scholar 

  18. R. Webb, S. Langford, J. Dickinson, T. Lippert, Appl. Surf. Sci. 127129, 815 (1998). http://www.sciencedirect.com/science/article/pii/S0169433297007484

  19. D. Marla, Y. Zhang, M. Jabbari, M.R. Sonne, J. Spangenberg, J.H. Hattel, Physics Procedia 83, 211 (2016). doi:10.1016/j.phpro.2016.08.011. http://www.sciencedirect.com/science/article/pii/S1875389216301183. Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the LANE 2016 September 19–22, 2016 Frth, Germany

  20. D. Marla, U.V. Bhandarkar, S.S. Joshi, J. Phys. D: Appl. Phys. 47(10), 105306 (2014). http://stacks.iop.org/0022-3727/47/i=10/a=105306

  21. S. Zelensky, K. Zelenska, Proc. SPIE 8772, 87721P (2013)

    Article  ADS  Google Scholar 

  22. R.C. Progelhof, J. Franey, T.W. Haas, Appl. Polym. 15(7), 1803 (1971). doi:10.1002/app.1971.070150724. http://onlinelibrary.wiley.com/doi/10.1002/app.1971.070150724/pdf

  23. Y. Zhang, H.N.r. Hansen, P.T. Tang, J.S. Nielsen, Int. J. Adv. Manuf. Technol. 68(5–8), 1775 (2013). doi:10.1007/s00170-013-4975-0

Download references

Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement No. 609405 (COFUNDPostdocDTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Marla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marla, D., Zhang, Y., Jabbari, M. et al. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles. Appl. Phys. A 122, 1042 (2016). https://doi.org/10.1007/s00339-016-0561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0561-2

Keywords

Navigation