Skip to main content
Log in

Investigation of high-temperature charge transport mechanism in Al–Gd2O3–Al-based metal–insulator–metal (MIM) structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the charge conduction mechanism at high temperature in Al–Gd2O3 (MIM) structure has been investigated by performing temperature-dependent current–voltage measurements in the temperature range 280–390 K. MIM structure is realized by electron beam evaporation system where thin films of Gd2O3 (40, 60 and 80 nm) and Al metal on both sides of dielectric film were deposited on glass substrate. The possibility of different transport mechanisms has been testified by plotting various graphs. The nonlinear behavior of LnV versus LnI and V 1/2 versus LnV/I graphs ruled out the possibility of space-charge-limited conduction (SCLC) and Poole–Frenkel mechanism in Al–Gd2O3–Al MIM structure. The straight lines LnIV 1/2 graphs at various temperatures confirmed that Schottky emission is the dominant transport mechanism in Al–Gd2O3–Al structure. The calculated values of field barrier lowering coefficient at different measurement temperatures were in good agreement with the theoretical prediction confirming conduction is via Schottky emission. The field-dependent Ln(I/T 2) versus 1000/T plots were obeyed a linear relationship according to Schottky emission theory. Furthermore, the dielectric thickness dependence room-temperature current–voltage characteristics of Al–Gd2O3–Al MIM structure were showed strong dependence of current on dielectric film thickness according to Schottky emission theory of conduction current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu-Chien Chiu, A review on conduction mechanism in dielectric films. Adv. Mater. Sci. Eng. ID 578168, 18 (2014)

    Google Scholar 

  2. Y.-C. Yao, T.-J. King, C. Hu, Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091–2093 (2002)

    Article  ADS  Google Scholar 

  3. R.K. Tamrakar, D.P. Bisen, N. Brahme, Comparison of photoluminescence properties of Gd2O3 phosphor synthesized by combustion and solid state reaction method. J. Radiat. Res. Appl. Sci. 7, 550–559 (2014)

    Article  Google Scholar 

  4. C.H. Kao, H. Chen, C.C. Chen, C.P. Chen, J.J. Wang, C.Y. Chen, Y.T. Chen, J.H. Lin, Y.C. Chu, Comparison of electrical and physical characteristics between Gd2O3 and Ti-doped GdTixOy trapping layers. Microelectron. Eng. 138, 21–26 (2015)

    Article  Google Scholar 

  5. Y. Tong, Z. Yan, H. Zeng, G. Chen, Enhanced blue emission of SnO2 doped phosphate glasses by Gd2O3 co-doping. J. Lumin. 145, 438–442 (2014)

    Article  Google Scholar 

  6. C.R. Michel, N.L. López-Contreras, A.H. Martínez-Preciado, Gas sensing properties of Gd2O3 microspheres prepared in aqueous media containing pectin. Sens. Actuat. B Chem. 177, 390–396 (2013)

    Article  Google Scholar 

  7. M.A. Ballem, F. Söderlind, P. Nordblad, P.-O. Käll, M. Odén, Growth of Gd2O3 nanoparticles inside mesoporous silica frameworks. Microporous Mesoporous Mater. 168, 221–224 (2013)

    Article  Google Scholar 

  8. G. Oskam, Metal oxide nanoparticles: synthesis, characterization and application. J. Sol-Gel. Sci. Technol. 37, 161–164 (2006)

    Article  Google Scholar 

  9. L. Wang, C.H. Yang, J. Wen, Physical principles and current status of emerging non-volatile solid stat memories. Electron. Mater. Lett. 11, 505–543 (2015)

    Article  ADS  Google Scholar 

  10. K. Nagashima, T. Yanagida, K. Oka, T. Kawai, Unipolar resistive switching characteristics of room temperature grown SnO2 thin films. Appl. Phys. Lett. 94, 1–4 (2009)

    Article  Google Scholar 

  11. D.R. Lamb, Electrical Conduction Mechanisms in Thin Insulating Films (Methuen, London, 1967)

    Google Scholar 

  12. M.F. Wasiq, K. Mahmood, M.A. Khan, M.Y. Nadeem, M.F. Warsi, Impact of metal electrode on the charge transport behavior of metal-Gd2O3 systems. J. Alloys Compd. 648, 577–580 (2015)

    Article  Google Scholar 

  13. J.G. Simmons, Potential barriers and emission-limited current flow between closely spaced parallel metal electrodes. J. Appl. Phys. 35, 2472 (1964)

    Article  ADS  Google Scholar 

  14. M. Asghar, K. Mahmood, S. Rabia, B.M. Samaa, M.Y. Shahid, M.A. Hasan, Investigation of temperature dependent barrier height of Au/ZnO/Si Schottky diodes. IOP Conf. Ser. Mater. Sci. Eng. 60, 012041 (2014)

    Article  Google Scholar 

  15. D. Nataraj, K. Senthil, S.K. Narayandass, D. Mangalaraj, Conduction studies on Bismuth selenide thin films. Cryst. Res. Technol. 34, 867–872 (1999)

    Article  Google Scholar 

  16. P.R. Emtage, W. Tantraporn, Schottky emission through insulating films. Phys. Rev. Lett. 8, 267 (1962)

    Article  ADS  Google Scholar 

  17. F.C. Chiu, C.M. Lai, Optical and electrical characterizations of cerium oxide thin films. J. Phys. D 43, 1–5 (2010)

    Article  Google Scholar 

  18. S. Meng, C. Basceri, B.W. Busch, G. Derderian, G. Sandhu, Leakage mechanisms and dielectric properties of Al2O3/TiN-based metal-insulator-metal capacitors. Appl. Phys. Lett. 83, 4429 (2003)

    Article  ADS  Google Scholar 

  19. Katsuhisa Murakami, Mathias Rommel, Vasil Yanev, Tobias Erlbacher, Anton J. Bauer, A highly sensitive evaluation method for the determination of different current conduction mechanisms through dielectric layers. J. Appl. Phys. 110, 054104 (2011)

    Article  ADS  Google Scholar 

  20. S. Pan, S.J. Ding, Y. Huang, Y.J. Huang, D.W. Zhang, L.K. Wang, R. Liu, High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors. J. Appl. Phys. 102, 073706 (2007)

    Article  ADS  Google Scholar 

  21. N. Alimardani, J.M. McGlone, J.F. Wager, J.F. Conley, Conduction processes in metal–insulator–metal diodes with Ta2O5 and Nb2O5 insulators deposited by atomic layer deposition. J. Vac. Sci. Technol. A 32, 01A22 (2014)

    Article  Google Scholar 

  22. C.A. Mead, Electron transport mechanism in insulting thin films. Phys. Rev. 128, 2088 (1962)

    Article  ADS  Google Scholar 

  23. S. Krishnan, E. Stefanakos, S. Bhansali, Effect of dielectric thickness and contact area on current–voltage characteristics of thin film metal–insulator–metal diodes. Thin Solid Films 516, 2244–2250 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. F. Wasiq or Muhammad Azhar Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasiq, M.F., Mahmood, K., Aen, F. et al. Investigation of high-temperature charge transport mechanism in Al–Gd2O3–Al-based metal–insulator–metal (MIM) structure. Appl. Phys. A 122, 1046 (2016). https://doi.org/10.1007/s00339-016-0554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0554-1

Keywords

Navigation