Abstract
In this paper, a first qualitative study on the performance characteristics of dual-work function gate junctionless TFET (DWG-JLTFET) on the basis of energy band profile modulation is investigated. A dual-work function gate technique is used in a JLTFET in order to create a downward band bending on the source side similar to PNPN structure. Compared with the single-work function gate junctionless TFET (SWG-JLTFET), the numerical simulation results demonstrated that the DWG-JLTFET simultaneously optimizes the ON-state current, the OFF-state leakage current, and the threshold voltage and also improves average subthreshold slope. It is illustrated that if appropriate work functions are selected for the gate materials on the source side and the drain side, the JLTFET exhibits a considerably improved performance. Furthermore, the optimization design of the tunnel gate length (L Tun) for the proposed DWG-JLTFET is studied. All the simulations are done in Silvaco TCAD for a channel length of 20 nm using the nonlocal band-to-band tunneling (BTBT) model.
This is a preview of subscription content, access via your institution.








References
- 1.
J.P. ColingeC, W. Lee, A. Afzalin, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. Oneil, A. Blake, M. White, A.M. Kelleher, B. McCarthy, R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)
- 2.
S. GundapaneniM, R.K. Bajaj, K.V.R.M. Pandey, S.Ganguly Murali, A. Kottantharayil, Effect of band-to-band tunneling on junctionless transistors. IEEE Trans. Electron Devices 59(4), 1023–1029 (2012)
- 3.
R. GandhiZ, N. Chen, K.Banerjee Singh, S. Lee, Vertical Si-nanowire n-type tunneling FETs with low subthreshold swing (≤50 mV/decade) at room temperature. IEEE Electron Device Lett. 32(4), 437–439 (2011)
- 4.
A. Mallik, A. Chattopadhyay, The impact of fringing field on the device performance of a p-channel tunnel field-effect transistor with a high-κ gate dielectric. IEEE Trans. Electron Devices 59(2), 277–282 (2012)
- 5.
R.S. Muller, T.I. Kamins, M. Chan, Device Electronics for Integrated Circuits (Wiley, New York, 2003), pp. 443–445
- 6.
W.Y. ChoiB, G. Park, J.D. Lee, T.J.K. Lee, Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)
- 7.
A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energyefficient electronic switches. Nature 479(7373), 329–337 (2011)
- 8.
R. Vishnoi, M.J. Kumar, Compact analytical model of dual material gate tunneling field effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61(6), 1936–1942 (2014)
- 9.
A.M. Ionescu, New functionality and ultralow power: key opportunities for post-CMOS era, in Proceedings of the International Symposium on VLSI Technology, Systems and Applcations, pp. 72–73, 2008
- 10.
K.K. BhuwalkaS, A.K. Sedlmaier, C. Ludsteck, J.Schulze Tolksdorf, I. Eisele, Vertical tunnel field-effect transistor. IEEE Trans. Electron Devices 51(2), 279–282 (2004)
- 11.
A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groesenken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91(5), 053102-1–053102-3 (2007)
- 12.
S. Agarwal, G. Klimeck, M. Luisier, Leakage-reduction design concepts for low-power vertical tunneling field-effect ransistors. IEEE Electron Device Lett. 31(6), 621–623 (2010)
- 13.
K.K. Bhuwalka, J. Schulze, I. Eisele, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate work function engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)
- 14.
T. NirschlS, J. Henzler, M. Fischer, A.B. Flude, M. Stoffi, J. Sterkel, C. Sedlmeir, R. Weber, U. Heinrich, J. Schaper, R. Einfeld, U. Neubert, K. Feldmann, E. Stahrenberg, G. Rudere, A. Georgakos, R. Huber, W.Hansch Kakoschke, D.S. Lanssiedel, Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid-State Electron. 50(1), 44–51 (2006)
- 15.
S. Saurabh, M.J. Kumar, Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor. Jpn. J. Appl. Phys. 48(6), 064503 (2009)
- 16.
E.H. Toh, G.H. Wang, G. Samudra, Y.C. Yeo, Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization. Appl. Phys. Lett. 90(26), 263507-1–263507-3 (2007)
- 17.
O.M. NayfehC, N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Device Lett. 29(9), 1074–1077 (2008)
- 18.
J. AppenzellerY, M. Lin, J. Knoch, Z. Chen, P. Avouris, Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)
- 19.
A. Vandooren, R. Rooyackers, D. Leonelli, F. Iacopi, S.D. Gendt, A. Verhulst, M. Heyns, E. Kunnen, N.D. Nguyen, M. Demand, P. Ong, W. Lee, J. Moonens, O. Richards, W. Vandenberghe, G. Groeseneken, A 35 nm diameter vertical silicon nanowire short-gate tunnel FET with high-k/metal gate, in Proceedings of the IEEE Silicon Nanoelectronics Workshop, pp. 21–22, 2009
- 20.
K. Boucart, W. Riess, A.M. Ionescu, Lateral strain profile as key technology booster for all-silicon tunnel FETs. IEEE Electron Device Lett. 30(6), 656–658 (2009)
- 21.
C.-H. Shih, N.D. Chien, Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32(11), 1498–1500 (2011)
- 22.
S. Saurabh, M.J. Kumar, Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)
- 23.
C. ShenS, L. Ong, C.H. Heng, G. Samudra, Y.C. Yeo, A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Electron Device Lett. 29(11), 1252–1255 (2008)
- 24.
B. Ghosh, M.W. Akram, Junctionless tunnel field effect transistor. IEEE Electron. Device Lett. 34(5), 548–586 (2013)
- 25.
P.K. Asthana, B. Ghosh et al., High-speed and low power ultradeep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Electron Device Lett. 61(2), 479–486 (2014)
- 26.
R.M.I. Abadiand, S.A.S. Ziabari, Representation of strained gate-all-around junctionless tunneling nanowire filed effect transistor for analog application. Microelectron. Eng. 162, 12–16 (2016)
- 27.
R.M.I. Abadiand, S.A.S. Ziabari, Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A 122, 616–623 (2016)
- 28.
S.O. KoswattaS, J. Koester, W. Hanench, On the possibility of obtaining MOSFET-like performance and sub-60 mV/dec swing in 1-D broken gap tunnel transistors. IEEE Trans. Electron Devices 57(12), 3222–3486 (2010)
- 29.
U. Khan, B. Ghosh, M.W. Akram, Effect of self-heating on selective buried oxide and silicon on insulator based junction less transistors. J. Low Power Electronics 9(3), 295–301 (2013)
- 30.
N. Cui, R. Liang, J. Xua, J. Xu, Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation. Appl. Phys. Lett. 2(2), 022111-1–022111-16 (2012)
- 31.
G. LeeJ, S. Jang, W.Y. Choi, Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors. Semicond. Sci. Technol. 28(5), 052001–052005 (2013)
- 32.
M.J. Lee, W.Y. Choi, Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron Device Lett. 33(10), 1459–1461 (2012)
- 33.
R.S. Saxena, M.J. Kumar, Dual material gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs. IEEE Trans. Electron Device 56(3), 517–522 (2009)
- 34.
D.R. Lide, CRC Handbook on Chemistry and Physics, 89th edn. (Taylor & Francis, New York, 2008), pp. 12–114
- 35.
W. Long, H. Ou, J.M. Kuo, K.K. Chin, Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)
- 36.
K.Y. Na, Y.S. Kim, Silicon complementary metal-oxide semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)
- 37.
C.H. Wangand, H. Chu, Y. S. Lai, Dual work-function metal gates. US Patent no. 73 81619B2, Jun 2008
- 38.
ATLAS Users ManualSILVACO Int., Santa Clara, CA, 2009
- 39.
K. Boucart, A.M. Ionescu, Double-gate tunnel FET with High-κ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)
- 40.
A. Villalon, C.L. Royer, P. Nguyen, S. Barraud, F. Glowacki, A. Revelant, L. Selmi, S. Cristoloveanu, L. Tosti, C. Vizioz, J.M. Hartmann, N. Bernier, B. Previtali, C. Tabone, F. Allain, S. Martinie, O. Rozeau, M. Viner, First demonstration of strained SiGe nanowires TFETs with ION beyond 700 μA/μm, in Proceedings of the Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, pp. 66–67, 2014
- 41.
W. HanschT, R.Kircher Vogelsang, M. Orlowski, Carrier transport near the Si/SiO2 interface of a MOSFET. Solid-State Electron. 32(10), 839–849 (1989)
- 42.
A. Schenk, A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron. 35(11), 1585–1596 (1992)
- 43.
P. Ranade, Y.C. Yeo, Q. Lu, Y.C. Yeo, H. Takeuch i, T.J. King, C. Hu, Molybdenum as a gate electrode for deep sub-micron CMOS technology, in Proceedings of the MRS Symposium, vol. 611, pp. C3.2.1–C3.2.6, 2000
- 44.
I. Polishchuk, P. Ranade, T.J. King, C. Hu, Dual work function metal gate CMOS transistors by Ni–Ti interdiffusion. IEEE Electron Device Lett. 23(4), 200–202 (2002)
- 45.
M. Hasan, H. Park, H. Yang, H. Hwang, H.S. Jung, J.H. Lee, Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application. Appl. Phys. Lett. 90(10), 103 510-1–103 510-3 (2007)
- 46.
V.V. NagavarapuR, R. Jhaveri, J.C.S. Woo, The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55(4), 1013–1019 (2008)
- 47.
A. Tura, Z. Zhang, P. Liu, Y.H. Xie, J.C. Woo, Vertical silicon p–n–p–n tunnel nMOSFET with MBE-grown tunneling junction. IEEE Trans. Electron Devices 58(7), 1907–1913 (2011)
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Molaei Imen Abadi, R., Sedigh Ziabari, S.A. Improved performance of nanoscale junctionless tunnel field-effect transistor based on gate engineering approach. Appl. Phys. A 122, 988 (2016). https://doi.org/10.1007/s00339-016-0530-9
Received:
Accepted:
Published:
Keywords
- Work Function
- Subthreshold Slope
- Source Side
- Drain Side
- Tunnel Gate