Advertisement

Applied Physics A

, 122:998 | Cite as

Sound absorption study of raw and expanded particulate vermiculites

  • Martin Vašina
  • Daniela Plachá
  • Marcel Mikeska
  • Lumír Hružík
  • Gražyna Simha MartynkováEmail author
Article

Abstract

Expanded and raw vermiculite minerals were studied for their ability to absorb sound. Phase and structural characterization of the investigated vermiculites was found similar for both types, while morphology and surface properties vary. Sound waves reflect in wedge-like structure and get minimized, and later are absorbed totally. We found that thanks to porous character of expanded vermiculite the principle of absorption of sound into layered vermiculite morphology is analogous to principle of sound minimization in “anechoic chambers.” It was found in this study that the best sound damping properties of the investigated vermiculites were in general obtained at higher powder bed heights and higher excitation frequencies.

Keywords

Sound Speed Sound Absorption Anechoic Chamber Sound Absorption Coefficient High Excitation Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in science”—LQ1602 and by the MSMT (SP2016/65 and SP2016/66). Authors thank to P. Peikertová, Ph.D. and S. Študentová from VŠB-Technical University of Ostrava for their contributions in the field of vermiculite characterization, FTIR and porosimetry measurement.

References

  1. 1.
    I. Perna, T. Hanzlicek, P. Straka, M. Steinerova, Acoustic absorption of geopolymer/sand mixture. J. Ceram. Silik. 53(1), 48–51 (2009)Google Scholar
  2. 2.
    H.K. Kim, H.K. Lee, Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio. J. Sound Vib. 329(7), 866–879 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S.B. Park, D.S. Seo, J. Lee, Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio. Cem. Concr. Res. 35(9), 1846–1854 (2005)CrossRefGoogle Scholar
  4. 4.
    K. Ramamurthy, E.K. Kunhanandan Nambiar, G.I.S. Ranjani, A classification of studies on properties of foam concrete. Cem. Concr. Comp. 31(6), 388–396 (2009)CrossRefGoogle Scholar
  5. 5.
    H.Y. Wang, Durability of self-consolidating lightweight aggregate concrete using dredged silt. Constr. Build. Mater. 23(6), 2332–2337 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T.G. Zielinski, M. Potoczek, R.E. Sliwa, L.J. Nowak, Acoustic absorption of a new class of alumina foams with various high-porosity levels. Arch. Acoust. 38(4), 495–502 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Schackow, C. Effting, M.V. Folgueras, S. Güths, G.S. Mendes, Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater. 57, 190–197 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Bartolini, S. Filippozzi, E. Princi, C. Schenone, S. Vicini, Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Appl. Clay Sci. 48(3), 460–465 (2010)CrossRefGoogle Scholar
  9. 9.
    F. Bergaya, G. Lagaly, General Introduction: Clays, Clay Minerals, and Clay Science, in Handbook of Clay Science, ed. by F. Bergaya, G. Lagaly (Elsevier, New York, 2013), pp. 1–19Google Scholar
  10. 10.
    M. Valášková, G.S. Martynkova, Vermiculite: Structural Properties and Examples of the Use, Clay Minerals in Nature-Their Characterization, Modification and Application. InTech (2012), pp. 209–238Google Scholar
  11. 11.
    G.S. Martynková, M. Valášková, Vermiculite in Nanocomposites, in Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific Publisher, New York, 2011), pp. 115–145Google Scholar
  12. 12.
    D. Placha, K. Rosenbergova, J. Slabotinsky, K. Mamulova Kutlakova, S. Studentova, G. Simha Martynkova, Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection. J. Haz. Mat. 271, 65–72 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Placha, G. Simha Martynkova, M.H. Ruemmeli, Preparation of organovermiculites using HDTMA: Structure and sorptive properties using naphthalene. J. Colloid Sci. 327(2), 341–347 (2008)CrossRefGoogle Scholar
  14. 14.
    F. Sgard, F. Castel, N. Atalla, Use of a hybrid adaptive finite element/modal approach to access the sound absorption of porous materials with meso-heterogeneities. Appl. Acoust. 72(4), 157–168 (2011)CrossRefGoogle Scholar
  15. 15.
    International Standard ISO 10534-2:1998. Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function MethodGoogle Scholar
  16. 16.
    F.S. Han, G. Seiffert, Y.Y. Zhao, B. Gibbs, Acoustic absorption behaviour of an open-celled aluminium foam. J. Phys. D Appl. Phys. 36(3), 294–302 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    L. Lapcik, M. Vasina, L. Lapcikova, E. Otyepkova, K.E. Waters, Investigation of advanced mica powder nanocomposite filler materials: surface energy analysis, powder rheology and sound absorption performance. Compos. B Eng. 77, 304–310 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Buratti, Indoor Noise Reduction Index with an open window (Part II). Appl. Acoust. 67(5), 383–401 (2006)CrossRefGoogle Scholar
  19. 19.
    V. Tiwari, A. Shukla, A. Bose, Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 65(3), 263–275 (2004)CrossRefGoogle Scholar
  20. 20.
    Y. Okudaira, Y. Kurihara, H. Ando, M. Satoh, K. Miyanami, Sound-absorption measurements for evaluating dynamic-physical properties of a powder bed. Powder Technol. 77(1), 39–48 (1993)CrossRefGoogle Scholar
  21. 21.
    J.J. Fripiat, J. Chaussidon, R. Touillaux, Study of dehydration of montmorillonite and vermiculite by infrared spectroscopy. J. Phys. Chem. 64(9), 1234–1241 (1960)CrossRefGoogle Scholar
  22. 22.
    R. Maderuelo-Sanz, J.M.B. Morillas, V.G. Escobar, Acoustical performance of loose cork granulates. Eur. J. Wood Wood Prod. 72(3), 321–330 (2014)CrossRefGoogle Scholar
  23. 23.
    V.V. Voronina, K.V. Horoshenkov, Acoustic properties of unconsolidated granular mixes. Appl. Acoust. 65(7), 673–691 (2004)CrossRefGoogle Scholar
  24. 24.
    L.L. Beranek, H.P. Sleeper Jr., The design and construction of anechoic sound chambers. J. Acoust. Soc. Am. 18, 140 (1946)ADSCrossRefGoogle Scholar
  25. 25.
    K.A. Cunefare, J. Badertscher, V. Wittstock, On the qualification of anechoic chambers; Issues related to signals and bandwidth. J. Acoust. Soc. Am. 120, 820 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of TechnologyTomas Bata University in ZlínZlínCzech Republic
  2. 2.Faculty of Mechanical EngineeringVŠB-Technical University of OstravaOstrava-PorubaCzech Republic
  3. 3.Nanotechnology CentreVŠB-Technical University of OstravaOstrava-PorubaCzech Republic
  4. 4.IT4 Innovation Centre of ExcellenceVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations