Skip to main content
Log in

Solidification pathways of ternary Cu62.5Fe27.5Sn10 alloy modulated through liquid undercooling and containerless processing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The active control of microstructure evolution is still a challenging factor for the development of advanced immiscible alloys. Here, we make an attempt to modulate the solidification pathways of undercooled Cu62.5Fe27.5Sn10 alloy by glass fluxing and drop tube techniques. Through regulating the liquid undercooling, three types of microstructures, dendrite, dispersive structure and macrosegregation pattern, were formed under the normal gravity condition. Below the first critical undercooling of 15 K, the alloy melt displayed the normal peritectic solidification. At moderate undercoolings above 15 K, the metastable liquid phase separation took place and the solidified microstructure appeared as homogeneously dispersed structure. If undercooling further overtook the second threshold of 107 K, macrosegregation occurred and the bulk alloy separated into an Fe-rich zone and a Cu-rich zone. Under the free fall condition, the alloy droplets with the droplet diameter beyond 805 μm showed the equilibrium peritectic solidification. If the droplet diameter decreased below 805 μm, the metastable liquid phase separation was induced and the microstructural morphology of Cu62.5Fe27.5Sn10 alloy droplet evolved from dendrite into dispersive structure. Furthermore, experimental and simulated results revealed that the temperature gradient had great influence on the size distribution of Fe-rich globules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.Y. Heriot, R.A.L. Jones, Nat. Mater. 4, 782–786 (2005)

    Article  ADS  Google Scholar 

  2. N. Pavlenko, T. Kopp, J. Mannhart, Phys. Rev. B 88, 201104 (2013)

    Article  ADS  Google Scholar 

  3. C.W. Chu, H.C. Yang, W.J. Hou, J.S. Huang, G. Li, Y. Yang, Appl. Phys. Lett. 92, 103306 (2008)

    Article  ADS  Google Scholar 

  4. G. Lestari, M. Abolhasani, D. Bennett, P. Chase, A. Günther, E. Kumacheva, J. Am. Chem. Soc. 136, 11972–11979 (2014)

    Article  Google Scholar 

  5. K. Murata, H. Tanaka, Nat. Mater. 11, 436–443 (2012)

    Article  ADS  Google Scholar 

  6. S. Kababya, A. Gal, K. Kahil, S. Weiner, L. Addadi, A. Schmidt, J. Am. Chem. Soc. 137, 990–998 (2015)

    Article  Google Scholar 

  7. J.J.Z. Li, W.K. Rhim, C.P. Kim, K. Samwer, W.L. Johnson, Acta Mater. 59, 2166–2171 (2011)

    Article  Google Scholar 

  8. E.S. Park, D.H. Kim, Acta Mater. 54, 2597–2604 (2006)

    Article  Google Scholar 

  9. S.B. Luo, W.L. Wang, Z.C. Xia, Y.H. Wu, B. Wei, Appl. Phys. A 119, 1003–1011 (2015)

    Article  ADS  Google Scholar 

  10. J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury, K. Hono, Scripta Mater. 53, 165–169 (2005)

    Article  Google Scholar 

  11. A.K. Gangopadhyay, T.K. Croat, K.F. Kelton, Acta Mater. 48, 4035–4043 (2000)

    Article  Google Scholar 

  12. S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, B. Wei, Acta Mater. 69, 355–364 (2014)

    Article  Google Scholar 

  13. B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, Appl. Phys. Lett. 85, 6353–6355 (2004)

    Article  ADS  Google Scholar 

  14. J.Z. Zhao, Scripta Mater. 54, 247–250 (2006)

    Article  Google Scholar 

  15. W.L. Wang, Y.H. Wu, L.H. Li, W. Zhai, X.M. Zhang, B. Wei, Sci. Rep. 5, 16335 (2015)

    Article  ADS  Google Scholar 

  16. J. Zhang, Y. Tang, K. Lee, M. Ouyang, Science 327, 1634–1638 (2010)

    Article  ADS  Google Scholar 

  17. F. Chen, R.L. Johnston, Appl. Phys. Lett. 92, 023112 (2008)

    Article  ADS  Google Scholar 

  18. Z.C. Xia, W.L. Wang, S.B. Luo, B. Wei, J. Appl. Phys. 117, 054901 (2015)

    Article  ADS  Google Scholar 

  19. C.H. Liebscher, V.R. Radmilović, U. Dahmen, N.Q. Vo, D.C. Dunand, M. Asta, G. Ghosh, Acta Mater. 92, 220–232 (2015)

    Article  Google Scholar 

  20. B.J. Park, Y.M. Chen, T. Ohkubo, Intermetallics 17, 958–961 (2009)

    Article  Google Scholar 

  21. S. Khmelevskyi, P. Mohn, Phys. Rev. B 71, 144423 (2005)

    Article  ADS  Google Scholar 

  22. L. Battezzati, S. Curiotto, E. Johnson, N.H. Pryds, Mater. Sci. Eng. A 449, 7–11 (2007)

    Article  Google Scholar 

  23. A. Bachmaier, M. Pfaff, M. Stolpe, H. Aboulfadl, C. Motz, Acta Mater. 96, 269–283 (2015)

    Article  Google Scholar 

  24. A. Munitz, A. Venkert, P. Landau, M.J. Kaufman, R. Abbaschian, J. Mater. Sci. 47, 7955–7970 (2012)

    Article  ADS  Google Scholar 

  25. J.R. Rogers, R.H. Davis, Metall. Trans. A 21, 59–68 (1990)

    Article  Google Scholar 

  26. X.R. Liu, N. Wang, B. Wei, Acta Phys. Sin. 54, 1671–1678 (2005)

    Google Scholar 

  27. X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for the help of Dr. D. L. Geng and Mr. S. J. Yang about their helpful discussions and critical comments in this work. And we express our appreciation for the financial support by the National Natural Science Foundation of China (Nos: 51371150, 51271150, 51571163 and 51327901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z.C., Wang, W.L., Wu, Y.H. et al. Solidification pathways of ternary Cu62.5Fe27.5Sn10 alloy modulated through liquid undercooling and containerless processing. Appl. Phys. A 122, 985 (2016). https://doi.org/10.1007/s00339-016-0505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0505-x

Keywords

Navigation