Skip to main content

Advertisement

Log in

Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. O’regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. M.G. Kang, N.G. Park, K.S. Ryu, S.H. Chang, K.J. Kim, Sol. Energy Mater. Sol. Cells 90, 574 (2006)

    Article  Google Scholar 

  3. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nat. Mater. 2, 402 (2003)

    Article  ADS  Google Scholar 

  4. C.H. Chao, C.L. Chang, C.H. Chan, S.Y. Lien, K.W. Weng, K.S. Yao, Thin Solid Films 518, 7209 (2010)

    Article  ADS  Google Scholar 

  5. L. Sun, S. Zhang, X. Sun, X. He, J. Nanosci. Nanotechnol. 10, 4551 (2010)

    Article  Google Scholar 

  6. J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, ACS Nano 4, 6203 (2010)

    Article  Google Scholar 

  7. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

    Article  Google Scholar 

  8. L. Kavan, M. Grätze, Electrochim. Acta 40, 643 (1995)

    Article  Google Scholar 

  9. B. Penga, G. Jungmanna, C. Jägerb, D. Haarerb, H.W. Schmidta, M. Thelakkata, Coordin. Chem. Rev. 248, 1479 (2004)

    Google Scholar 

  10. K. Prabakar, M.K. Son, D. Ludeman, H.J. Kim, Thin Solid Films 519, 894 (2010)

    Article  ADS  Google Scholar 

  11. C.S. Kovash Jr., J.D. Hoefelmeyerb, B.A. Logue, Electrochim. Acta 67, 18 (2012)

    Article  Google Scholar 

  12. S. Mariyappan, M.F. Baroughi, D. Galipeau, Electron. Lett. 45, 648 (2009)

    Article  Google Scholar 

  13. M.H. Abdullaha, M. Rusop, Ceram. Int. 40, 967 (2014)

    Article  Google Scholar 

  14. P.J. Cameron, L.M. Peter, J. Phys. Chem. B 107, 14394 (2003)

    Article  Google Scholar 

  15. H. Yua, S. Zhanga, H. Zhaoa, G. Willb, P. Liua, Electrochim. Acta 54, 1319 (2009)

    Article  Google Scholar 

  16. T.Y. Cho, S.G. Yoon, S.S. Sekhon, M.G. Kang, C.H. Han, Bull. Korean Chem. Soc. 32, 3629 (2011)

    Article  Google Scholar 

  17. H. Chen, Z. Wei, K. Yan, Y. Yi, J. Wang, S. Yang, Faraday Discuss. 176, 271 (2014)

    Article  ADS  Google Scholar 

  18. H.C. Chang, H.H. Huang, C.Y. Wu, R.Q. Hsu, C.Y. Hsu, Int. J. Photoenergy 2014, 1 (2014)

    Google Scholar 

  19. S. Iizuka, S. Ooka, A. Nakata, M. Mizuhata, S. Deki, Electrochim. Acta 51, 802 (2005)

    Article  Google Scholar 

  20. J.J. Huang, Y.T. Lee, Surf. Coat. Technol. 231, 257 (2013)

    Article  Google Scholar 

  21. Y. Zhang, X. Lie, F. Feng, F. Zhou, Surf. Coat. Technol. 205, 2572 (2010)

    Article  Google Scholar 

  22. H. Zong, J. Zhang, G. Shi, Y. Li, Q. Zhang, H. Wang, Electrochim. Acta 179, 197 (2015)

    Article  Google Scholar 

  23. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol C 1, 1 (2000)

    Article  Google Scholar 

  24. M. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 107, 8981 (2003)

    Article  Google Scholar 

  25. Y.J. Kim, Y.H. Lee, M.H. Lee, H.J. Kim, J.H. Pan, G.I. Lim, Y.S. Choi, K. Kim, N.G. Park, C. Lee, W.I. Lee, Langmuir 24, 13225 (2008)

    Article  Google Scholar 

  26. L. Han, N. Koide, Y. Chiba, A. Islam, T. Mitate, Comptes Rendus Chim. 9, 645 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under Contract No. 104-2221-E-212-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Jie Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JJ., Chiu, SP., Wu, MJ. et al. Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition. Appl. Phys. A 122, 971 (2016). https://doi.org/10.1007/s00339-016-0492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0492-y

Keywords

Navigation