Skip to main content
Log in

Controlled growth of high-quality graphene using hot-filament chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-quality graphene was grown on polycrystalline copper (Cu) foils (1 cm × 1 cm) using hot-filament chemical vapor deposition method. The role of process parameters such as gas flow rates (methane and hydrogen), growth temperatures (filament and substrate) and durations on the growth of graphene was studied. The process parameters were also optimized to grow monolayer, bilayer and multilayer graphene in a controlled manner, and a growth mechanism was deduced from the experimental results. The presence of graphene on Cu foils was confirmed using X-ray photoelectron spectroscopy, micro-Raman spectroscopy, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. FESEM micrographs clearly showed that the graphene starts nucleating as hexagonal islands and later evolves as dendritic lobe-shaped islands with an increase in supersaturation. The TEM images substantiate the growth of monolayer, bilayer and multilayer graphene. The I 2D/I G ratio = 2 confirmed the presence of the monolayer graphene and the absence of ‘D’ peak in the Raman spectrum indicated the high purity of graphene grown on Cu foils. These results also show that the polycrystalline copper foil morphology has negligible effect on the growth of monolayer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney et al., Nat. Mater. 8, 203 (2009)

    Article  ADS  Google Scholar 

  4. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)

    Article  ADS  Google Scholar 

  5. R. Hawaldar, P. Merino, M.R. Correia, I. Bdikin, J. Grácio, J. Méndez, J.A. Martín-Gago, M.K. Singh, Sci. Rep. 2, 682 (2012)

    Article  ADS  Google Scholar 

  6. S. Pei, H.-M. Cheng, Carbon 50, 3210 (2012)

    Article  Google Scholar 

  7. R.E.I. Schropp, Thin Solid Films 517, 3415 (2009)

    Article  ADS  Google Scholar 

  8. B.B. Wang, K. Ostrikov, K. Zheng, L. Wang, S.S. Zou, J. Mater. Chem. C 2, 2851 (2014)

    Article  Google Scholar 

  9. F. Mendoza, T.B. Limbu, B.R. Weiner, G. Morell, Diam. Relat. Mater. 51, 34 (2015)

    Article  ADS  Google Scholar 

  10. S.K. Chong, N.M. Huang, S. Abdul Rahman, Carbon 86, 1 (2015)

    Article  Google Scholar 

  11. N. Selvakumar, S.B. Krupanidhi, H.C. Barshilia, Adv. Mater. 26, 2552 (2014)

    Article  Google Scholar 

  12. H.C. Barshilia, N. Selvakumar, K.S. Rajam, A. Biswas, J. Appl. Phys. 103, 23507 (2008)

    Article  Google Scholar 

  13. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T.F. Chung, P. Peng, N.P. Guisinger et al., Nat. Mater. 10, 443 (2011)

    Article  ADS  Google Scholar 

  14. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, ACS Nano 5, 6069 (2011)

    Article  Google Scholar 

  15. A.W. Robertson, J.H. Warner, Nano Lett. 11, 1182 (2011)

    Article  ADS  Google Scholar 

  16. S. Kataria, A. Patsha, S. Dhara, A.K. Tyagi, H.C. Barshilia, J. Raman Spectrosc. 43, 1864 (2012)

    Article  ADS  Google Scholar 

  17. D. Wei, S. Haque, P. Andrew, J. Kivioja, T. Ryhanen, A. Pesquera, A. Centeno, B. Alonso, A. Chuvilin, A. Zurutuza, J. Mater. Chem. A 1, 3177 (2013)

    Article  Google Scholar 

  18. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 8, 2012 (2008)

    Article  ADS  Google Scholar 

  19. S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Nano Lett. 10, 4128 (2010)

    Article  ADS  Google Scholar 

  20. W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Carbon 49, 4122 (2011)

    Article  Google Scholar 

  21. X. Li, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E.M. Vogel, E. Voelkl, L. Colombo, R.S. Ruoff, Nano Lett. 10, 4328 (2010)

    Article  ADS  Google Scholar 

  22. K. Kumar, E.-H. Yang, Sci. Rep. 3, 2571 (2013)

    ADS  Google Scholar 

  23. J. Wu, Y. Shao, B. Wang, K.K. Ostrikov, J. Feng, Q. Cheng, Plasma Process. Polym. (2016). doi:10.1002/ppap.201600029

    Google Scholar 

  24. D.H. Seo, S. Kumar, K. Ostrikov, Carbon 49, 4331 (2011)

    Article  Google Scholar 

  25. R. Muñoz, C. Gómez-Aleixandre, Chem. Vap. Depos. 19, 297 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, CSIR-NAL for giving permission to publish these results. Mr. Jakeer Khan and Mr. Siju are thanked for their support in HFCVD system setup and FESEM studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Selvakumar or Harish C. Barshilia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, N., Vadivel, B., Rao, D.V.S. et al. Controlled growth of high-quality graphene using hot-filament chemical vapor deposition. Appl. Phys. A 122, 943 (2016). https://doi.org/10.1007/s00339-016-0483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0483-z

Keywords

Navigation