Skip to main content
Log in

One-pot synthesis of visible-light-driven Ag/Ag3PO4 photocatalyst immobilized on exfoliated montmorillonite by clay-mediated in situ reduction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to find efficient photocatalytic materials and convenient preparation method, a well-designed Ag/Ag3PO4–OMMT (organically modified montmorillonite) plasmonic photocatalyst was synthesized via the “one-pot” process without any reducing species. Ag+ could be reduced by Si–OH moiety on the surface of OMMT. The resulting samples were thoroughly studied by using X-ray diffraction, X-ray photoelectron spectra, transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, UV–Vis diffuse reflectance spectra, and so on. The as-prepared Ag/Ag3PO4–OMMT photocatalyst exhibited efficient, stable photocatalytic activity and recyclability for the degradation of Rhodamine B (RhB) under visible light radiation (λ > 420 nm). The optimum synergetic effect of Ag3PO4/OMMT was found at a weight ratio of 50 %. The degradation efficiency of RhB over Ag/Ag3PO4–OMMT (1:1) was about 92.9 %, and photocatalytic activity remained stable after three cycles. The results show that the designed photocatalyst is feasible and effective. The proposed photocatalysis mechanism is probably attributed to surface plasmon resonance of metallic Ag nanoparticles (NPs) and also attributed to negatively charged exfoliated montmorillonite. The Ag/Ag3PO4–OMMT composites showed highly visible light photocatalytic activity, which makes them promising nanomaterials for further applications in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Liu, L. Li, Y. Gao, C. Wang, J. Jiang, Y. Xiong, Angew. Chem. Int. Ed. 54, 2980–2985 (2015)

    Article  Google Scholar 

  2. H. Liu, Y. Du, Y. Deng, D.Y. Peide, Chem. Soc. Rev. 44, 2732–2743 (2015)

    Article  Google Scholar 

  3. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206–4219 (2010)

    Article  Google Scholar 

  4. Y. Wu, Z. Wang, S. Chen, J. Wu, X. Guo, Z. Liu, RSC Adv. 5, 8751–8756 (2015)

    Google Scholar 

  5. X. Zhang, J. Wu, G. Meng, X. Guo, C. Liu, Z. Liu, Appl. Surf. Sci. 366, 486–493 (2016)

    Article  ADS  Google Scholar 

  6. Q. Zhang, G. Meng, J. Wu, D. Li, Z. Liu, Opt. Mater. (Amst. Neth.) 46, 52–58 (2015)

    Article  Google Scholar 

  7. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Nat. Mater. 9, 559–564 (2010)

    Article  ADS  Google Scholar 

  8. N. Umezawa, O. Shuxin, J. Ye, Phys. Rev. B 83, 287–292 (2011)

    Article  Google Scholar 

  9. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, J. Am. Chem. Soc. 133, 6490–6492 (2011)

    Article  Google Scholar 

  10. Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Chem. Soc. Rev. 42, 3127–3171 (2013)

    Article  Google Scholar 

  11. D.C. Tzarouchis, P. Ylä-Oijala, T. Ala-Nissila, A. Sihvola, Appl. Phys. A Mater. Sci. Process. 122, 1–7 (2016)

    Article  Google Scholar 

  12. Z.H. Shah, J. Wang, Y. Ge, C. Wang, W. Mao, S. Zhang, R. Lu, J. Mater. Chem. A 3, 3568–3575 (2015)

    Article  Google Scholar 

  13. Q. Han, C. Zhang, W. Gao, Z. Han, T. Liu, C. Li, Z. Wang, E. He, H. Zheng, Sens. Actuators B 231, 609–614 (2016)

    Article  Google Scholar 

  14. Y. Liu, L. Fang, H. Lu, Y. Li, C. Hu, H. Yu, Appl. Catal. B 115, 245–252 (2012)

    Article  Google Scholar 

  15. X. Lin, J. Hou, S. Jiang, Z. Lin, M. Wang, G. Che, RSC Adv. 5, 104815–104821 (2015)

    Article  Google Scholar 

  16. X. Lin, J. Hou, X. Guo, Y. Wang, J. Zheng, C. Liu, Y. Yang, G. Che, Sep. Purif. Technol. 156, 875–880 (2015)

    Article  Google Scholar 

  17. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130, 1676–1680 (2008)

    Article  Google Scholar 

  18. K. Shen, M.A. Gondal, R.G. Siddique, S. Shi, S. Wang, J. Sun, Q. Xu, Chin. J. Catal. 35, 78–84 (2014)

    Article  Google Scholar 

  19. Q. Zhu, W.-S. Wang, L. Lin, G.-Q. Gao, H.-L. Guo, H. Du, A.-W. Xu, J. Phys. Chem. C. 117, 5894–5900 (2013)

    Article  Google Scholar 

  20. T.-S. Wu, K.-X. Wang, G.-D. Li, S.-Y. Sun, J. Sun, J.-S. Chen, ACS Appl. Mater. Interfaces 2, 544–550 (2010)

    Article  Google Scholar 

  21. S. Sohrabnezhad, M. Zanjanchi, M. Razavi, Spectrochim. Acta A 130, 129–135 (2014)

    Article  ADS  Google Scholar 

  22. G.B.B. Varadwaj, K. Parida, RSC Adv. 3, 13583–13593 (2013)

    Article  Google Scholar 

  23. J. Ma, J. Zou, L. Li, C. Yao, T. Zhang, D. Li, Appl. Catal. B 134, 1–6 (2013)

    Article  Google Scholar 

  24. E. Eren, B. Afsin, J. Hazard. Mater. 151, 682–691 (2008)

    Article  Google Scholar 

  25. R. Liu, R.L. Frost, W.N. Martens, Y. Yuan, J. Colloid Interface Sci. 327, 287–294 (2008)

    Article  Google Scholar 

  26. B.J. Borah, D. Dutta, P.P. Saikia, N.C. Barua, D.K. Dutta, Green Chem. 13, 3453–3460 (2011)

    Article  Google Scholar 

  27. J. Ma, Q. Liu, L. Zhu, J. Zou, K. Wang, M. Yang, S. Komarneni, Appl. Catal. B 182, 26–32 (2016)

    Article  Google Scholar 

  28. D. Varade, K. Haraguchi, Langmuir 29, 1977–1984 (2013)

    Article  Google Scholar 

  29. J. Wang, Adv. Mater. Res. 335, 3–11 (2011)

    Google Scholar 

  30. S. Sohrabnezhad, A. Pourahmad, M.M. Moghaddam, A. Sadeghi, Spectrochim. Acta A 136, 1728–1733 (2015)

    Article  ADS  Google Scholar 

  31. H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, Chem. Mater. 20, 6543–6549 (2008)

    Article  Google Scholar 

  32. W. Teng, X. Li, Q. Zhao, J. Zhao, D. Zhang, Appl. Catal. B 125, 538–545 (2012)

    Article  Google Scholar 

  33. Q. Yue, Y. Zhang, C. Wang, X. Wang, Z. Sun, X.-F. Hou, D. Zhao, Y. Deng, J. Mater. Chem. A 3, 4586–4594 (2015)

    Article  Google Scholar 

  34. Q. Liang, Y. Shi, W. Ma, Z. Li, X. Yang, Phys. Chem. Chem. Phys. 14, 15657–15665 (2012)

    Article  Google Scholar 

  35. J. Wan, E. Liu, J. Fan, X. Hu, L. Sun, C. Tang, Y. Yin, H. Li, Y. Hu, Ceram. Int. 41, 6933–6940 (2015)

    Article  Google Scholar 

  36. J. Ma, B. Cui, J. Dai, D. Li, J. Hazard. Mater. 186, 1758–1765 (2011)

    Article  Google Scholar 

  37. Y. Liu, L. Fang, H. Lu, L. Liu, H. Wang, C. Hu, Catal. Commun. 17, 200–204 (2012)

    Article  Google Scholar 

  38. C. Guo, M. Ge, L. Liu, G. Gao, Y. Feng, Y. Wang, Environ. Sci. Technol. 44, 419–425 (2009)

    Article  ADS  Google Scholar 

  39. H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang, Y. Liu, Z. Kang, J. Mater. Chem. 22, 10501–10506 (2012)

    Article  Google Scholar 

  40. P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Photonics 1, 438–483 (2009)

    Article  Google Scholar 

  41. J. Yu, G. Dai, B. Huang, J. Mater. Chem. C 113, 16394–16401 (2009)

    Google Scholar 

  42. K.V. Kumar, K. Porkodi, F. Rocha, Catal. Commun. 9, 82–84 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by funding from the National Natural Science Foundation of China (21367022) and Program for Tackling Key Problems in Science and Technology of Shihezi University (GYJS2014-ZDGG01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, X., Wu, J. et al. One-pot synthesis of visible-light-driven Ag/Ag3PO4 photocatalyst immobilized on exfoliated montmorillonite by clay-mediated in situ reduction. Appl. Phys. A 122, 946 (2016). https://doi.org/10.1007/s00339-016-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0479-8

Keywords

Navigation