Skip to main content
Log in

Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton’s principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Ramirez, P.R. Heyliger, E. Pan, Discrete layer solution to free vibrations of functionally graded magneto–electro-elastic plates. Mech. Adv. Mater. Struct. 13(3), 249–266 (2006)

    Article  Google Scholar 

  2. D.J. Huang, H.J. Ding, W.Q. Chen, Analytical solution for functionally graded magneto–electro-elastic plane beams. Int. J. Eng. Sci. 45(2), 467–485 (2007)

    Article  Google Scholar 

  3. S.C. Kattimani, M.C. Ray, Control of geometrically nonlinear vibrations of functionally graded magneto–electro-elastic plates. Int. J. Mech. Sci. 99, 154–167 (2015)

    Article  Google Scholar 

  4. Ebrahimi, F., & Barati, M. R. (2016). Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J. Vib. Control, 1077546316646239

  5. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MATH  Google Scholar 

  6. A.Cemal Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  7. F.A.C.M. Yang, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  8. S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos. B Eng. 57, 21–24 (2014)

    Article  Google Scholar 

  9. A. Tounsi, S. Benguediab, B. Adda, A. Semmah, M. Zidour, Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 1(1), 1–11 (2013)

    Article  Google Scholar 

  10. A. Besseghier, H. Heireche, A.A. Bousahla, A. Tounsi, A. Benzair, Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix. Adv. Nano Res. 3(1), 29–37 (2015)

    Article  Google Scholar 

  11. F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct. 20(2), 227–249 (2016)

    Article  Google Scholar 

  12. Barati, M. R., & Shahverdi, H. (2016). An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position. Mech. Adv. Mater. Struct. (just-accepted), 1–47

  13. Y. Wang, F. Li, K. Kishimoto, Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress. Appl. Phys. A 99, 907–911 (2010)

    Article  ADS  Google Scholar 

  14. Y. Wang, F. Li, K. Kishimoto, Scale effects on the longitudinal wave propagation in nanoplates. Physica E 42(5), 1356–1360 (2010)

    Article  ADS  Google Scholar 

  15. S. Narendar, S. Gopalakrishnan, Temperature effects on wave propagation in nanoplates. Compos. B 43, 1275–1281 (2011)

    Article  Google Scholar 

  16. T. Murmu, M.A. McCarthy, S. Adhikari, In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. 96, 57–63 (2013)

    Article  Google Scholar 

  17. K. Kiani, Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories. Physica E 57, 179–192 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218(14), 7406–7420 (2012)

    MathSciNet  MATH  Google Scholar 

  19. F. Ebrahimi, M.R. Barati, Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur. Phys. J. Plus 131(8), 279 (2016)

    Article  Google Scholar 

  20. Ebrahimi, F., & Barati, M. R. (2016). Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams. Mech. Adv. Mater. Struct. (just-accepted), 00–00

  21. F. Ebrahimi, M.R. Barati, A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment. Appl. Phys. A 122(9), 792 (2016)

    Article  ADS  Google Scholar 

  22. F. Ebrahimi, M.R. Barati, a). A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. Arab. J. Sci. Eng. 41(5), 1679–1690 (2016)

    Article  MathSciNet  Google Scholar 

  23. A. Zemri, M.S.A. Houari, A.A. Bousahla, A. Tounsi, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct. Eng. Mech. 54(4), 693–710 (2015)

    Article  Google Scholar 

  24. M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18(2), 409–423 (2015)

    Article  Google Scholar 

  25. H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.A.A. Bedia, New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 140(2), 374–383 (2014)

    Article  Google Scholar 

  26. Z. Belabed, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, O.A. Bég, An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. B Eng. 60, 274–283 (2014)

    Article  Google Scholar 

  27. M. Bennoun, M.S.A. Houari, A. Tounsi, A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)

    Article  Google Scholar 

  28. H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38(1), 265–275 (2016)

    Article  Google Scholar 

  29. F.L. Chaht, A. Kaci, M.S.A. Houari, A. Tounsi, O.A. Beg, S.R. Mahmoud, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18(2), 425–442 (2015)

    Article  Google Scholar 

  30. M. Ahouel, M.S.A. Houari, E.A. Bedia, A. Tounsi, Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos. Struct. 20(5), 963–981 (2016)

    Article  Google Scholar 

  31. F. Ebrahimi, M.R. Barati, Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field. Appl. Phys. A 122(4), 1–18 (2016)

    Article  Google Scholar 

  32. F. Ebrahimi, M.R. Barati, An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams. Adv. Nano Res. 4(2), 65–84 (2016)

    Article  Google Scholar 

  33. Ebrahimi, F., & Barati, M. R. (2016). Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J. Braz. Soc. Mech. Sci. Eng., 1–16

  34. F. Ebrahimi, M.R. Barati, Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams. Eur. Phys. J. Plus 131(7), 1–14 (2016)

    Article  Google Scholar 

  35. Ebrahimi, F., & Barati, M. R. (2016). Buckling analysis of smart size-dependent higher order magneto–electro–thermo-elastic functionally graded nanosize beams. J. Mech, 1–11

  36. F. Ebrahimi, M.R. Barati, A nonlocal higher-order refined magneto–electro-viscoelastic beam model for dynamic analysis of smart nanostructures. Int. J. Eng. Sci. 107, 183–196 (2016)

    Article  Google Scholar 

  37. M.R. Barati, A.M. Zenkour, H. Shahverdi, Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory. Compos. Struct. 141, 203–212 (2016)

    Article  Google Scholar 

  38. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53(6), 1143–1165 (2015)

    Article  Google Scholar 

  39. F. Ebrahimi, M.R. Barati, Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl. Phys. A 122(9), 843 (2016)

    Article  ADS  Google Scholar 

  40. F. Ebrahimi, M.R. Barati, A. Dabbagh, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016)

    Article  Google Scholar 

  41. Y.W. Zhang, J. Chen, W. Zeng, Y.Y. Teng, B. Fang, J. Zang, Surface and thermal effects of the flexural wave propagation of piezoelectric functionally graded nanobeam using nonlocal elasticity. Comput. Mater. Sci. 97, 222–226 (2015)

    Article  Google Scholar 

  42. S. Narendar, Wave dispersion in functionally graded magneto–electro-elastic nonlocal rod. Aerosp. Sci. Technol. 51, 42–51 (2016)

    Article  Google Scholar 

  43. Arefi, M. (2016). Analysis of wave in a functionally graded magneto–electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials. Acta Mech., 1–14

  44. Ebrahimi, F., & Barati, M. R. (2016). Flexural Wave Propagation Analysis of Embedded S-FGM Nanobeams under Longitudinal Magnetic Field Based on Nonlocal Strain Gradient Theory. Arab. J. Sci. Eng., 1–12

  45. Ebrahimi, F., & Barati, M. R. (2016). Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory. Int. J. Smart Nano Mater., 1–25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Appendix

Appendix

In Eq. (55), \(a_{ij}\) and \(m_{ij} , \left( {i,j = 1,2,3,4} \right)\) are defined as follows:

$$\begin{aligned} a_{11} = - A_{11} k^{2} \hfill \\ a_{12} = - iB_{11} k^{3} \hfill \\ a_{13} = ikA_{31}^{e} \hfill \\ a_{14} = ikA_{31}^{m} \hfill \\ a_{21} = iB_{11} k^{3} \hfill \\ a_{22} = - D_{11} k^{4} + \left( {1 + \mu k^{2} } \right)\left[ {\left( {\tilde{N} + N^{E} + N^{H} } \right)k^{2} } \right] \hfill \\ a_{23} = + E_{31}^{e} k^{2} \hfill \\ a_{24} = + E_{31}^{m} k^{2} \hfill \\ a_{31} = ikA_{31}^{e} \hfill \\ a_{32} = - E_{31}^{e} k^{2} \hfill \\ a_{33} = - \left( {F_{33}^{e} + F_{11}^{e} k^{2} } \right) \hfill \\ a_{34} = - \left( {F_{31}^{m} + F_{11}^{m} k^{2} } \right) \hfill \\ a_{41} = ikA_{31}^{m} \hfill \\ a_{42} = E_{31}^{m} k^{2} \hfill \\ a_{43} = - \left( {F_{31}^{m} + F_{11}^{m} k^{2} } \right) \hfill \\ a_{44} = - \left( {X_{33}^{m} + X_{11}^{m} k^{2} } \right) \hfill \\ \end{aligned}$$
(59)

and

$$\begin{aligned} m_{11} = I_{0} \left( {1 + \mu k^{2} } \right) \hfill \\ m_{12} = I_{1} \left( {1 + \mu k^{2} } \right) \hfill \\ m_{13} = m_{14} = 0 \hfill \\ m_{21} = - iI_{1} k\left( {1 + \mu k^{2} } \right) \hfill \\ m_{22} = + \left( {I_{0} + I_{2} k^{2} } \right)\left( {1 + \mu k^{2} } \right) \hfill \\ m_{23} = m_{24} = m_{31} = m_{32} = m_{33} = m_{34} = 0 \hfill \\ \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Barati, M.R. & Dabbagh, A. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Appl. Phys. A 122, 949 (2016). https://doi.org/10.1007/s00339-016-0465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0465-1

Keywords

Navigation